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When a quantum particle traverses a rectangular potential created by a quantum field both photon 
exchange and entanglement between particle and field take place. We present the full analytic solution 
of the Schrödinger equation of the composite particle–field system allowing investigation of these 
phenomena in detail and comparison to the results of a classical field treatment. Besides entanglement 
formation, remarkable differences also appear with respect to the symmetry between energy emission 
and absorption, resonance effects and if the field initially occupies the vacuum state.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The behavior of a quantum particle exposed to an oscillat-
ing rectangular potential has been studied by several authors un-
der different aspects involving, for example, tunneling time [1,2], 
chaotic signatures [3,4], appearance of Fano resonances [5], Floquet 
scattering for strong fields [6] and its absence for non-Hermitian 
potentials [7], chiral tunneling [8], charge pumping [9] and other 
photon assisted quantum transport phenomena in theory [10–12]
and experiment [13–18], recently realized particularly in quantum 
dots [19–22].

In these works, though the potential is treated as a classical 
quantity, the change of the particle’s energy is explicitly attributed 
to a photon emission or absorption process. Here, we introduce the 
photon concept in a formally correct way by describing the field 
generating the potential as quantized. Hence, we pursue the ideas 
which we started to elaborate in our previous publication [23]. 
There, we only arrived at an algebraic expression for the photon 
transition amplitudes whereas we now are able to present analytic 
results for all important initial field states enabling advanced in-
vestigations on photon exchange processes and entanglement for-
mation.

In order to compare semiclassical and fully-quantized treatment 
in our physical scenario, we recapitulate the results of the calcula-
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tion for a classical field (Section 2). Then, we turn to the quantized 
field treatment (Section 3). After presenting the general algebraic 
solution, we will explicitly evaluate the photon exchange probabili-
ties for an incoming plane wave and for a field being initially in an 
arbitrary Fock state, a thermal state or a coherent state. The spe-
cial cases of no initial photons (vacuum state) and of high initial 
photon numbers will be treated in particular.

2. Classical treatment of the field

The potential created by a classical field is a real-valued func-
tion of space and time in the particle’s Hamiltonian. Our con-
sidered potential oscillates harmonically in time and is spatially 
constant for 0 ≤ x < L and vanishes outside.

Ĥ =
{

p̂2

2m + V cos(ωt + ϕ), if 0 ≤ x < L (region II)
p̂2

2m , else (region I + III)
(1)

It therefore corresponds to a harmonically oscillating rectangular 
potential barrier (see Fig. 1).

The Schrödinger equation is solved in each of the three regions 
separately and then the wave functions are matched by continu-
ity conditions. A general approach based on Floquet theory [24]
can be found in [25]. Since the calculation of transmission and re-
flection coefficients requires the solution of an infinite dimensional 
equation system no closed analytic expression for them is feasible 
(see Chapter II of [25]). However, we can deduce from Chapter III 
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Fig. 1. (Color online.) Spatial characteristics of the considered potential V . It is har-
monically oscillating in time with frequency ω in region II and vanishes elsewhere. 
Behind the barrier the incoming plane wave is split up into a coherent superposi-
tion of plane waves with energy En = E0 + nh̄ω.

of [25] that the transmission probability approaches one if the 
incoming energy E0 becomes large with respect to the potential 
amplitude V and the associated “photon” energy h̄ω (E0 � V , ̄hω). 
For the further, we restrict ourselves to incoming waves whose en-
ergy E0 is sufficiently high so that reflection at the barrier can be 
neglected. In that case, standard methods for differential equations 
suffice to find the solution [26,27]. If we assume the wave function 
|ψI 〉 in region I to be a plane wave with wave vector k0 we get for 
the wave function |ψIII〉 behind the potential barrier

|ψI 〉 = |k0〉 �⇒ |ψIII〉 =
+∞∑

n=−∞
Jn(β) e−inη |kn〉 (2)

where

β = 2
V

h̄ω
sin

ωτ

2
, η = ϕ + ωτ

2
+ π

2
(3)

τ = mL

h̄k0
= L

v0
, k2

n = k2
0 + 2m

h̄
nω (4)

For a more detailed derivation including the solution for region II 
as well we refer to [26,28].

In summary, a plane wave |k0〉 gets split up into a coherent 
superposition of plane waves |kn〉 whose energy is given by the 
incident energy E0 plus integer multiples of h̄ω. The transition 
probability for an energy exchange of nh̄ω is just the square of the 
Bessel function J 2

n of the n-th order. The argument of the Bessel 
function shows that an increasing amplitude V of the potential 
also increases the probability for exchanging larger amounts of en-
ergy.

Apart from this expected result, it also exhibits a geometric 
“resonance”-condition. If the “time-of-flight” τ through the field 
region and the oscillation frequency are tuned such that ωτ = 2lπ , 
l ∈ N, all Bessel functions Jn with n 
= 0 vanish and no energy is 
transferred at all. The plane wave even passes the potential com-
pletely unaltered since J0(0) = 1. That’s a remarkable difference 
between an oscillating and a static potential where at least phase 
factors are always attached to the wave function. An experimental 
implementation of the classical potential can be found in [28,29].

3. Quantized treatment of the field

Since the energy exchange between the harmonically oscillat-
ing potential and the particle is quantized by integer multiples 
of h̄ω most authors already speak of photon exchange processes 
although the potential stems from a purely classical field. This no-
tion is problematic since a formally correct introduction of the 
photon concept requires a quantization of the field generating the 
potential. For this purpose, the corresponding field equation has 
to be solved and a canonical quantization condition for Fourier 

Fig. 2. (Color online.) In the quantized field treatment, the particle’s position deter-
mines which of the overall wavefunctions |	I 〉, |	II〉 or |	III〉 describes the state 
of the composite quantum system. The spatial characteristics of the field do not 
change, it is always present between 0 and L, but the field state changes in accor-
dance with the particle due to their interaction.

amplitudes of the field is introduced which are then no longer 
complex-valued coefficients but interpreted as creation and anni-
hilation operators.

For the further, we assume that such a quantum field whose 
spatial mode is well approximated by the rectangular form gener-
ates the potential. The quantum system we observe now consists 
of particle and field together. The total state |	〉 of the compos-
ite quantum system is an element of the product Hilbert space 
Htotal = Hparticle ⊗ Hfield. If the particle is outside the field region 
the evolution of the state is given by Ĥ0 composed of the free 
single-system Hamiltonians ĥp

0 and ĥf
0 of particle and field

Ĥ0 = ĥp
0 ⊗ 1 + 1 ⊗ ĥf

0 (5)

ĥp
0 = p̂2

2m
, ĥf

0 = h̄ω
(

â†â + 1
2

)
(6)

Interaction between field and particle takes place if the particle 
is inside the field region which can be formally expressed by using 
the Heavyside θ -function in the quantized version of the sinusoidal 
driving term

Ĥ int = λ
(
θ(x̂) − θ(x̂ − L)

)
⊗

(
â† + â

)
(7)

where all constants have already been absorbed in the coupling 
parameter λ. Since the sheer presence of an interaction is con-
nected to the particle’s position we again distinguish between 
three different states |	I 〉, |	II〉, and |	III〉 for the composite quan-
tum system (see Fig. 2).

3.1. Fock states

As in the classical field case, we assume that the kinetic energy 
of the incoming particle is sufficiently high so that reflection at 
field entry can be neglected. Then, we can choose as ansatz for 
|	I 〉 the particle’s state to be a single plane wave with wave vector 
k0 and the field to be present in a distinct Fock state n0

|	I 〉 = |k0〉 ⊗ |n0〉 (8)

In order to get |	II〉, we switch to the position space represen-
tation of the particle’s part of the wave function and match |	I 〉
at xparticle ≡ x = 0 for all times t with the general solution in re-
gion II. It is given by an arbitrary linear superposition of plane 
waves for the particle and displaced Fock states for the field [23]. 
The continuity conditions uniquely determine the expansion coef-
ficients and yet |	II〉. At x = L, |	II〉 has to be matched with the 
general solution of the free Hamiltonian which is given by an arbi-
trary superposition of plane waves and Fock states. The state |	III〉
behind the field region then reads

|	III〉 =
∞∑

n=0

tn0n|kn0−n〉 ⊗ |n〉, k2
l = k2

0 + 2m

h̄
lω (9)
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