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Shear horizontal (SH) wave propagation in finite graded piezoelectric layered media is investigated by
transfer matrix method. Different from the previous studies on SH wave propagation in completely
periodic layered media, calculations on band structure and transmission in this paper show that the
graded layered media possess very large band gaps. Harmonic wave simulation by finite element method
(FEM) confirms that the reason of bandwidth enlargement is that waves within the band gap ranges

are spatially enhanced and stopped by the corresponding graded units. The study suggests that the
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graded structure possesses the property of manipulating elastic waves spatially, which shows potential
applications in strengthening energy trapping and harvesting.
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1. Introduction

Shear horizontal (SH) wave propagation in layered media has
attracted a lot of attention [1-10] in several decades due to its the-
oretical significance and engineering application. In particular, this
wave propagation in infinite periodic layered media [3,5,8,11-14]
has been focused on by many researchers in recent years, because
of its band gap property, which can be used as new acoustic de-
vices like filters and transducers. Among these works, complicated
situations have been considered to study influences of piezoelec-
tricity [13,14], piezomagnetism [11], imperfect interface [12], in-
cident angle [4], disorder [3], and functionally graded material [5]
on the band gap property. In this paper, different from the previous
studies which are based on the infinite completely periodic cases
with emphasis placed on the effect factors of band gap, the finite
graded piezoelectric layered media are considered. Here, piezoelec-
tricity is included in view of the fact that the structure may show
potential applications in energy absorption and energy harvesting.

The work is triggered by the recent studies of rainbow trap-
ping on electromagnetic and acoustic wave propagation in graded
or chirped gratings. Rainbow trapping means that the broadband
incident waves will be enhanced and stopped at different spa-
tial positions due to the slow wave effect and finally reflected
at the incident side after a certain “trapping time”. Originally,
this is mainly shown for the electromagnetic surface wave [15]
which shows very flat dispersion relation, and later extended to
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the acoustic surface wave [16]. The dispersion relation is flat when
wave vector approaches the Brillouin boundary, therefore, the inci-
dent wave can be slowed, enhanced, and trapped within a certain
time [17]. Then, the electromagnetic bulk wave propagation in the
one-dimensional chirped photonic crystals [18] and acoustic bulk
wave propagation in the graded sonic crystal [19] are also stud-
ied to show rainbow trapping phenomenon. In these works only
one flat-like band of the dispersion curves is considered to get the
enhanced wave fronts. In this paper, all the bands of the disper-
sion curves in a considered frequency range are considered for the
elastic wave with rainbow trapping phenomenon extended to the
certain bands. Very large bandwidth and spatially enhanced wave
fronts are got for the SH wave propagation through the graded lay-
ered media.

The paper is organized as follows. The designed layered model
and transfer matrix method computing band structure and trans-
mission are firstly introduced to describe the problem. Then, nu-
merical results on band structure, transmission, and harmonic
wave field of incident Gaussian beam computed by finite element
method (FEM) are given to show the spatial bandwidth enlarge-
ment and wave field enhancement due to the graded characteristic
possessed by the layered media. Finally, conclusions are summa-
rized.

2. Model and transfer matrix method

The schematic of the graded layered media is drawn in Fig. 1.
The graded units are formed by sublayer 1 with identical thickness
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Fig. 1. The schematic of the graded piezoelectric layered media. The thickness-
graded sublayer 2 is regularly inserted into medium 1 with an identical thickness
interval. L is the thickness of the graded units formed by sublayer 1 with identical
thickness a» and sublayer 2 with graded thickness a®. a® is linearly increased
from 0 to a® by 30 layers.

a® and sublayer 2 with graded thickness a®. a@ is linearly in-
creased from 0 to a(¥ by 30 layers. The maximum thickness of the
graded unit is 2aV. Sublayers 1 and 2 both belong to piezoelectric
material with material constants shown in Table 1.

When an obliquely incident harmonic wave propagates in a
transversely isotropic piezoelectric material with the wave vector
located in the plane perpendicular to the material polarization di-
rection, the SH or out of plane wave equation is decoupled from
the plane strain or in-plane wave equation. With the quasi-static
approximation adopted for the electric field, the SH wave propaga-
tion in piezoelectric medium meets the following equation

C44(Uu3 11 + U3 22) = pii3

€15
11 +¢ 0= a(uan +u322) (1)

where us3 is the transverse displacement in the x3 direction, ¢ the
electric potential, p the mass density, cs4 the elastic constant, €11
the dielectric constant, ej5 the piezoelectric coefficient, and c44 =
Ca4 + 6%5/811. The general solution of Eq. (1) can be assumed as

u3(x1, X2, £) = u(xy)e! 2 =0

¢(X] , X2, t) = ¢(X] )ei(kzxz —wt) (2)

where  is the circular frequency, i = +/—1, and k; equal to
ksin(6p) with k the wave vector and 6y the incident angle. Substi-
tuting Eq. (2) into Eq. (1), u(x1) and ¢ (x1) can be solved as follows

U(x1) = Ael®1 4 Be~ix

$(xy) = Celant 1 pehaxt 4 E15
11

where q = ,/w?p/Caq — k% and the coefficients C and D represent

the electric potential surface wave. For small incident angle, the
coefficients C and D can be taken zero to simplify the calcula-
tion, which is called non-surface wave approximation in Refs. [2,
10]. Recalling the constitutive relations: T31 = c44U3,1 +€15¢,1 and
D1 =eqs5u3 1 — &11¢,1, the stress T31 and electric displacement D4
can be expressed as

> (Aef™t 4 peiaxt) 3)

T31 = iqCas(Ae™™ + Be™9%1) + kpeq5(Cek?t — De~*2¥)
D1 =—kaée1 (Ce"le — Deikle) (4)

From Eq. (4), one can see that the electric displacement D; only
depends on the electric potential surface wave.

For the layered media, the physical quantities us, ¢, T31 and D
on the interface of each layer can be organized as a state vector:

Table 1
Material constants of PZT-4 (sublayer 1) and LiTO3 (sublayer 2).
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v={us, T31,¢, Dq }T. The state vector on the left boundary v; and
that on the right boundary vg of the i-th graded unit can be con-
nected by a transfer matrix T;, according to the general solutions of
Egs. (3) and (4). The transfer matrix is a function of the frequency

and sublayers’ thickness. For sublayer 1, one has "1(1]) = Tgl)vil). and

sublayer 2, v(z) T}Z)vf). Considering that the interfaces between
sublayer 1 and sublayer 2 are perfectly bonded, one has the con-
tinuity condition vg) = v£2>. So the relationship of the state vector
of the left boundary in sublayer 1 and that of the right boundary
in sublayer 2 can be written as

(2) T(2) (2) T;Z)Vl(il) :T§2)T§1)v£1) :TiV](_l) (5)
Here, the dlmensions of the transfer matrix are 4 x 4. When the
non-surface wave approximation is adopted, the dimensions of the
transfer matrix are 2 x 2 with the state vector v degenerating into
{u3, T31}". The transfer matrices for the sublayer with and without
electric potential surface wave considered are given in Appendix A.

To compute band structure of the corresponding infinite com-
pletely periodic layered media stacked by each graded unit like
the i-th unit, a phase relation related to the wave number defining
boundary conditions between the adjacent units can be applied
to the state vectors according to Bloch theorem: v’ = eiKLiv(",
K is the Bloch wave vector taken values from the range (0, 7w /L;).
With Eq. (5), one can get (T; — eiKLi l)v{” = 0. Band structure can
be computed making the coefficient determinant of the equation
equal to zero, i.e.

IT; —e'*Lil| =0 (6)

For transmission calculation, the transfer matrix method will be
numerically unstable inherently when the dimensions of the trans-
fer matrix are large. There are many other matrix methods [6,7,
9| proposed overcoming this disadvantage to compute the trans-
mission of the layered media. For simplicity and consistency, a
non-surface wave approximation will be adopted here to make
the transmission calculation easier, numerically stable, and faster.
In paper [10], the authors specially denoted that the non-surface
wave approximation will be efficient to compute the transmission
coefficient when the incident angle is small. This paper will also
validate this point.

When the non-surface wave approximation is adopted, the
transfer matrix T; of the i-th unit is a 2 x 2 matrix: [Tyq, T12;
T»1, T22]. The total transfer matrix of N-layered media can be accu-
mulated as TN, where TV is equal to T;T; - --Ty. The incident and
transmitted waves can be written as u(x1) = eid"x1 4 re—iax1 and
u(xy) = teiq(l)xl, with r and t representing the amplitude ratios of
the reflected and transmitted plane waves to the incident plane
wave, respectively. The state vectors on the incident interface and
out-going interface are denoted as vi, = {1 +r, 1q<1)c(]) — )T
and vy = e ¢, iq¢l, t)T, respectively. With the relation-
ship of voy and vj, with respect to the total transfer matrix
TN : voue = TNV, r and ¢ can be solved as

N Da)y27N (1) N
T, + @VegH2 T, +igMel) [, —T”]

N (1) (1) ™
=T, + (@M 2T, +igMey) [T, + T 1

i2qMeleid 4"

t= (7)
—T0, + @OE)2TY, +iqMeg T, + T 1

Material Mass density p Elastic constant Piezoelectric constant Dielectric constant
(10% kg/m?) ca4 (GPa) e1s (C/m?) £11 (1011 Fjm)

PZT-4 76 25.6 12.7 646

LiTO3 34 17.8 0.89 6.43
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