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Shear horizontal (SH) wave propagation in finite graded piezoelectric layered media is investigated by 
transfer matrix method. Different from the previous studies on SH wave propagation in completely 
periodic layered media, calculations on band structure and transmission in this paper show that the 
graded layered media possess very large band gaps. Harmonic wave simulation by finite element method 
(FEM) confirms that the reason of bandwidth enlargement is that waves within the band gap ranges 
are spatially enhanced and stopped by the corresponding graded units. The study suggests that the 
graded structure possesses the property of manipulating elastic waves spatially, which shows potential 
applications in strengthening energy trapping and harvesting.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Shear horizontal (SH) wave propagation in layered media has 
attracted a lot of attention [1–10] in several decades due to its the-
oretical significance and engineering application. In particular, this 
wave propagation in infinite periodic layered media [3,5,8,11–14]
has been focused on by many researchers in recent years, because 
of its band gap property, which can be used as new acoustic de-
vices like filters and transducers. Among these works, complicated 
situations have been considered to study influences of piezoelec-
tricity [13,14], piezomagnetism [11], imperfect interface [12], in-
cident angle [4], disorder [3], and functionally graded material [5]
on the band gap property. In this paper, different from the previous 
studies which are based on the infinite completely periodic cases 
with emphasis placed on the effect factors of band gap, the finite 
graded piezoelectric layered media are considered. Here, piezoelec-
tricity is included in view of the fact that the structure may show 
potential applications in energy absorption and energy harvesting.

The work is triggered by the recent studies of rainbow trap-
ping on electromagnetic and acoustic wave propagation in graded 
or chirped gratings. Rainbow trapping means that the broadband 
incident waves will be enhanced and stopped at different spa-
tial positions due to the slow wave effect and finally reflected 
at the incident side after a certain “trapping time”. Originally, 
this is mainly shown for the electromagnetic surface wave [15]
which shows very flat dispersion relation, and later extended to 
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the acoustic surface wave [16]. The dispersion relation is flat when 
wave vector approaches the Brillouin boundary, therefore, the inci-
dent wave can be slowed, enhanced, and trapped within a certain 
time [17]. Then, the electromagnetic bulk wave propagation in the 
one-dimensional chirped photonic crystals [18] and acoustic bulk 
wave propagation in the graded sonic crystal [19] are also stud-
ied to show rainbow trapping phenomenon. In these works only 
one flat-like band of the dispersion curves is considered to get the 
enhanced wave fronts. In this paper, all the bands of the disper-
sion curves in a considered frequency range are considered for the 
elastic wave with rainbow trapping phenomenon extended to the 
certain bands. Very large bandwidth and spatially enhanced wave 
fronts are got for the SH wave propagation through the graded lay-
ered media.

The paper is organized as follows. The designed layered model 
and transfer matrix method computing band structure and trans-
mission are firstly introduced to describe the problem. Then, nu-
merical results on band structure, transmission, and harmonic 
wave field of incident Gaussian beam computed by finite element 
method (FEM) are given to show the spatial bandwidth enlarge-
ment and wave field enhancement due to the graded characteristic 
possessed by the layered media. Finally, conclusions are summa-
rized.

2. Model and transfer matrix method

The schematic of the graded layered media is drawn in Fig. 1. 
The graded units are formed by sublayer 1 with identical thickness 
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Fig. 1. The schematic of the graded piezoelectric layered media. The thickness-
graded sublayer 2 is regularly inserted into medium 1 with an identical thickness 
interval. L is the thickness of the graded units formed by sublayer 1 with identical 
thickness a(1) and sublayer 2 with graded thickness a(2) . a(2) is linearly increased 
from 0 to a(1) by 30 layers.

a(1) and sublayer 2 with graded thickness a(2) . a(2) is linearly in-
creased from 0 to a(1) by 30 layers. The maximum thickness of the 
graded unit is 2a(1) . Sublayers 1 and 2 both belong to piezoelectric 
material with material constants shown in Table 1.

When an obliquely incident harmonic wave propagates in a 
transversely isotropic piezoelectric material with the wave vector 
located in the plane perpendicular to the material polarization di-
rection, the SH or out of plane wave equation is decoupled from 
the plane strain or in-plane wave equation. With the quasi-static 
approximation adopted for the electric field, the SH wave propaga-
tion in piezoelectric medium meets the following equation

c44(u3,11 + u3,22) = ρü3

φ,11 + φ,22 = e15

ε11
(u3,11 + u3,22) (1)

where u3 is the transverse displacement in the x3 direction, φ the 
electric potential, ρ the mass density, c44 the elastic constant, ε11
the dielectric constant, e15 the piezoelectric coefficient, and c44 =
c44 + e2

15/ε11. The general solution of Eq. (1) can be assumed as

u3(x1, x2, t) = u(x1)ei(k2x2−ωt)

φ(x1, x2, t) = φ(x1)ei(k2x2−ωt) (2)

where ω is the circular frequency, i = √−1, and k2 equal to 
k sin(θ0) with k the wave vector and θ0 the incident angle. Substi-
tuting Eq. (2) into Eq. (1), u(x1) and φ(x1) can be solved as follows

u(x1) = Aeiqx1 + Be−iqx1

φ(x1) = Cek2x1 + De−k2x1 + e15

ε11

(
Aeiqx1 + Be−iqx1

)
(3)

where q =
√

ω2ρ/c44 − k2
2 and the coefficients C and D represent 

the electric potential surface wave. For small incident angle, the 
coefficients C and D can be taken zero to simplify the calcula-
tion, which is called non-surface wave approximation in Refs. [2,
10]. Recalling the constitutive relations: T31 = c44u3,1 + e15φ,1 and 
D1 = e15u3,1 − ε11φ,1, the stress T31 and electric displacement D1
can be expressed as

T31 = iqc44
(

Aeiqx1 + Be−iqx1
) + k2e15

(
Cek2x1 − De−k2x1

)

D1 = −k2ε11
(
Cek2x1 − De−k2x1

)
(4)

From Eq. (4), one can see that the electric displacement D1 only 
depends on the electric potential surface wave.

For the layered media, the physical quantities u3, φ, T31 and D1
on the interface of each layer can be organized as a state vector: 

v = {u3, T31, φ, D1}T. The state vector on the left boundary vL and 
that on the right boundary vR of the i-th graded unit can be con-
nected by a transfer matrix Ti , according to the general solutions of 
Eqs. (3) and (4). The transfer matrix is a function of the frequency 
and sublayers’ thickness. For sublayer 1, one has v(1)

R = T(1)
i v(1)

L , and 
sublayer 2, v(2)

R = T(2)
i v(2)

L . Considering that the interfaces between 
sublayer 1 and sublayer 2 are perfectly bonded, one has the con-
tinuity condition v(1)

R = v(2)
L . So the relationship of the state vector 

of the left boundary in sublayer 1 and that of the right boundary 
in sublayer 2 can be written as

v(2)
R = T(2)

i v(2)
L = T(2)

i v(1)
R = T(2)

i T(1)
i v(1)

L = Tiv
(1)
L (5)

Here, the dimensions of the transfer matrix are 4 × 4. When the 
non-surface wave approximation is adopted, the dimensions of the 
transfer matrix are 2 × 2 with the state vector v degenerating into 
{u3, T31}T. The transfer matrices for the sublayer with and without 
electric potential surface wave considered are given in Appendix A.

To compute band structure of the corresponding infinite com-
pletely periodic layered media stacked by each graded unit like 
the i-th unit, a phase relation related to the wave number defining 
boundary conditions between the adjacent units can be applied 
to the state vectors according to Bloch theorem: v(2)

R = eiK Li v(1)
L . 

K is the Bloch wave vector taken values from the range (0, π/Li). 
With Eq. (5), one can get (Ti − eiK Li I)v(1)

L = 0. Band structure can 
be computed making the coefficient determinant of the equation 
equal to zero, i.e.
∣∣Ti − eiK Li I

∣∣ = 0 (6)

For transmission calculation, the transfer matrix method will be 
numerically unstable inherently when the dimensions of the trans-
fer matrix are large. There are many other matrix methods [6,7,
9] proposed overcoming this disadvantage to compute the trans-
mission of the layered media. For simplicity and consistency, a 
non-surface wave approximation will be adopted here to make 
the transmission calculation easier, numerically stable, and faster. 
In paper [10], the authors specially denoted that the non-surface 
wave approximation will be efficient to compute the transmission 
coefficient when the incident angle is small. This paper will also 
validate this point.

When the non-surface wave approximation is adopted, the 
transfer matrix Ti of the i-th unit is a 2 × 2 matrix: [T11, T12;
T21, T22]. The total transfer matrix of N-layered media can be accu-
mulated as TN, where TN is equal to T1T2 · · ·TN . The incident and 
transmitted waves can be written as u(x1) = eiq(1)x1 + re−iq(1)x1 and 
u(x1) = teiq(1)x1 , with r and t representing the amplitude ratios of 
the reflected and transmitted plane waves to the incident plane 
wave, respectively. The state vectors on the incident interface and 
out-going interface are denoted as vin = {1 + r, iq(1)c(1)

44 (1 − r)}T

and vout = eiq(1)x(N)
1 {t, iq(1)c(1)

44 t}T, respectively. With the relation-
ship of vout and vin with respect to the total transfer matrix 
TN : vout = TNvin, r and t can be solved as

r = TN
21 + (q(1)c(1)

44 )2TN
12 + iq(1)c(1)

44 [TN
22 − TN

11]
−TN

21 + (q(1)c(1)
44 )2TN

12 + iq(1)c(1)
44 [TN

22 + TN
11]

t = i2q(1)c(1)
44 eiq(1)x(N)

1

−TN
21 + (q(1)c(1)

44 )2TN
12 + iq(1)c(1)

44 [TN
22 + TN

11]
(7)

Table 1
Material constants of PZT-4 (sublayer 1) and LiTO3 (sublayer 2).

Material Mass density ρ
(103 kg/m3)

Elastic constant 
c44 (GPa)

Piezoelectric constant 
e15 (C/m2)

Dielectric constant 
ε11 (10−11 F/m)

PZT-4 7.6 25.6 12.7 646
LiTO3 3.4 17.8 0.89 6.43
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