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Systems of interacting cells containing an activator–inhibitor pathway, regulating naturally in their inner 
parts their end-product concentrations through a sequence of biochemical reactions with feedback-
loops: an end-product inhibition of the first substrate, and an autocatalytic activation of the end-product 
through an allosteric enzyme-mediated reaction are investigated. The individual cells are considered to be 
identical and are described by nonlinear differential equations recently proposed following the concerted 
transition model. The chemical and electrical coupling types, realized by exchange of metabolites across 
concentration of the cells are used in order to analyze the onset of phase and complete synchronization 
in the biochemical system. It is found that depending on the coupling nature and the range of 
coupling strength, cells enter into different synchronization regimes going from low-quality to high-
quality synchronization. The synchronization manifold’s stability is analyzed. The results are supported 
by numerical simulations using indicators such as the conditional Lyapunov exponents and the rate of 
change of the Lyapunov function. The results indicate that the system cannot completely synchronize 
under the single action of the chemical coupling. The combined effect of both chemical and electrical 
couplings is found to be of capital importance in the onset of complete synchronization and high quality 
synchronization.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In a pioneering work on oscillating biochemical reactions Hig-
gins [1–4] addressed the problem in which way a coupling be-
tween individual cells affects the resulting dynamics, for example, 
by synchronizing their oscillations. Synchronization, i.e., the ability 
of coupled oscillators to lock to a common frequency, is a general 
and ubiquitous feature of nature, since it occurs for mechanical 
or electrical oscillators, lasers, chemical reactions and biological 
clocks, to mention just some well-known examples [5–19]. In the 
last named fields of studies, it was observed that many living or-
ganisms naturally come together, organize themselves into coupled 
systems, in order to perform certain functions, with the aim of 
maintaining the equilibrium in their living environment and per-
petuate life. This is also actually the case for the basic building 
blocks of any living organism: the cells [2,3,20,21].
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Roughly speaking, a cell is a ‘dynamical black box’ that admits 
various types of input and that has an output which is uniquely 
determined by the inputs and the initial state. One fundamental 
property of coupled cells is that the coupling structure forces the 
existence of subspaces that are flow-invariant under the associ-
ated coupled cells systems: the synchrony subspaces. These should 
have an important role in the kinds of dynamics that can occur, 
and a significant step in understanding the dynamics forced by 
the coupling of these patterns of synchrony. The chemical coupling 
between cells is well known to be changing the cells synchrony 
subspace [22–26], however the analysis of coupled cells with acti-
vator inhibitor pathway under such circumstances has not yet been 
carried out. Understanding both the processes that influence the 
synchronization of individual biochemical oscillators and how the 
behaviors of living cells arise out of the properties of coupled pop-
ulations of cells oscillators is an important goal in the study of 
biological systems, and a field of research with enormous practical 
applications [27].

The phenomenon of synchronization in electrically coupled 
cells with activator–inhibitor pathways has been extensively stud-
ied in [28,29]. However, these works on coupled cells with 
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activator–inhibitor pathways have been only carried out with the 
so-called electrical coupling. This scenario termed as short range 
interaction suggests that cells be linked through electrical cou-
pling or signal only. However, in nature, the interactions among 
cells sharing the same living environment are more complex and 
involve much more than just short range and linear interactions. 
They are in general nonlinear, deterministic or stochastic and in-
volve long range interactions with one or many other cells. The 
chemical and electrical coupling schemes have proven their physi-
cal importance [22–25]. In the first case (electrical) the coupling is 
linear and made through gap junction and directly depends on the 
difference in the normalized concentrations of the substances in 
the pathway of each cell. While in the second case (chemical), the 
coupling is often modeled by a threshold nonlinear input or output 
function. In this last case, coupled cells with activator–inhibitor 
pathways may exhibit a variety of synchronization behavior in-
cluding phase, partial and complete synchronization. Motivated by 
this, in the present study, we go further with the work of [28,29]
by analyzing the effect of the chemical coupling on the dynam-
ics and synchronization of coupled cells with activator–inhibitor 
pathways, and also analyze the combined effect of electrical and 
chemical coupling on the high quality synchronization process of 
the coupled cells. To the best of our knowledge, this problem has 
never been investigated. We recall that, the method used here is 
more appealing and provides optimal parameter for implementa-
tion and is based on the rate of change of the Lyapunov function 
of the coupled system.

The rest of the paper is organized as follows: in Section 2, 
we present the model and explore the dynamics of the single cell 
with activator–inhibitor pathways. We expect the cell to exhibits 
new dynamical behaviors ranging from limit cycle to complex 
and chaotic oscillations when some cell’s physiological parame-
ters change. Section 3 is devoted to the chemically coupled cells 
and their stability analysis. We explore different scenarios for the 
appearance of the synchronization in the coupled system. Numer-
ical simulations demonstrate the capacity of such coupled cells to 
achieve synchronization among themselves. In Section 4 we ana-
lyze the complementary roles played by the electrical and chem-
ical couplings in the synchronization process of the coupled cells. 
We show that the conjugate action of both couplings favors the 
onset of synchronization in the system. Later on, we present in 
Section 5 the analysis of the stability of the ideal complete syn-
chronous solution by using the rate of change of the Lyapunov 
function of the variational system, this in order to detect coupling 
range for high quality synchronization in the biochemical coupled 
cells. We end our work with a conclusion in Section 6

2. Single cell and its dynamics

Since the 1980s, modeling has emerged as a novel tool to han-
dle the rapidly growing information on the molecular parts list and 
the overwhelmingly complex interaction circuitry of signalling net-
works. Following this development, Sinha et al. [32–34] proposed 
in 1987 a mathematical model of a biochemical system describ-
ing the dynamics of normalized concentration of the substrates in 
a single cell with activator–inhibitor pathways. Since then, many 
studies have been carried out on this model ranging from classi-
cal nonlinear dynamical analysis to synchronization of electrically 
coupled network formed by units of single cell described by this 
model [28,29,36,35]. This cell, namely “the cell with activator–
inhibitor pathway”, has a biochemical pathway regulated by nega-
tive and positive feedback processes. Its model describes actually 
a three-step sequential reaction having two substrates, and one 
end product. Their concentrations are regulated by a positive and 
a negative feedback process respectively in terms of end product 
inhibition of the first substrate (i.e. when the concentration of the 

end product is large in the cell, the negative feedback induces an 
attenuation in the concentration of the substrate in the intracel-
lular medium (see Refs. [32–34] for more details)). The model is 
represented by the following set of ordinary differential equations:

dx

dt
= F (z) − kx

dy

dt
= x − G(y, z)

dz

dt
= G(y, z) − qz. (1)

The present model describes a three-step sequential reaction 
having successively two substrates and one end product whose 
normalized concentrations in the intracellular medium are respec-
tively represented by x, y and z. Therefore, x is the normalized 
concentration of the first substrate, y is that of the second sub-
strate, and z is the normalized concentration of the end product. 
The end product is the signal molecule intended to be diffused into 
the extracellular medium to other cells via the cells’s plasma mem-
brane. As reported previously, these concentrations are regulated 
by a negative feedback process in terms of the end product inhibi-
tion of the first substrate, as well as via an autocatalytic activation 
of the allosteric enzyme by the end product. The functions F (z)
and G(y, z) representing the negative and positive feedback pro-
cesses, are nonlinear processes designed following the concerted 
transition model described in [3,4,39] and are given by

F (z) = 1

1 + z4
and G(y, z) = T y(1 + y)(1 + z)2

L + (1 + y)2(1 + z)2

The parameter “k”, called the rate of degradation of the first sub-
strate represents the speed at which the first product’s normalized 
concentration decreases in time. The parameters T and L are re-
spectively, the maximum velocity of the enzyme which determines 
the maximum rate at which the biochemical reaction transforming 
the second substrate into end product is performed; and the al-
losteric constant of the enzyme determining how the alterability in 
the protein’s (i.e. enzyme) activity takes place after reception at its 
binding site of the signal from the cell through positive feedback, 
as one form of autocrine signaling. It is noteworthy that autocrine 
signaling takes place when a cell sends some signals back to it-
self in order to regulate internal cellular mechanisms vital for a 
good human body functional balance. q is the rate of degradation 
of the end product. It determines the speed at which z decreases 
over time, especially when z is sufficiently large in the intracel-
lular medium of biological cells. Thus, the accumulations in first 
substrate and end product depends critically on the parameters k
and q.

2.1. Fixed points and their stability

In order to analyze the linear stability of the system, we start 
by finding the fixed points of the system (1). The fixed points 
are obtained by setting dx

dt = dy
dt = dz

dt = 0. These conditions can be 
rewritten as
⎧⎪⎪⎨
⎪⎪⎩

z5 + z − 1

kq
= 0

x = qz

x
[
L + (1 + y)2(1 + z)2

] − T y(1 + y)(1 + z)2 = 0

(2)

From the following, the fixed points are obtained whenever the 
three equations in (2) are satisfied. However it is not possible to 
obtain analytical solution for this system. We thus proceed by solv-
ing numerically the first equation of the system using the Newton–
Raphson algorithm. Substituting this solution into the two other 
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