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The intriguing dark and composite rogue wave dynamics in coupled Hirota systems are unveiled, based 
on the exact explicit rational solutions obtained under the assumption of equal background height. It is 
found that a dark rogue wave state would occur as a result of the strong coupling between two field 
components with large wavenumber difference, and there would appear plenty of composite structures 
that are attributed to the specific wavenumber difference and the free choice of three independent struc-
tural parameters. The coexistence of different fundamental rogue waves in such coupled Hirota systems 
is also demonstrated.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Originally, the rogue waves terminology refers to the transient 
gigantic ocean waves of extreme amplitude that appear seemingly 
out of nowhere and have been held responsible for a large num-
ber of maritime disasters [1]. As these colossal surface waves are 
intrinsically difficult to monitor because of their fleeting existences 
and dangerousness, more and more effort has been devoted to the 
study of such rare extreme events in contexts that are similar in 
physical models but can be readily conducted in a laboratory en-
vironment [2]. The recent experimental progress includes the first 
ever observation of optical rogue waves in a photonic crystal fiber 
[3], the resurgence of surface rogue waves in a water wave tank 
[4,5], the realization of capillary rogue waves via the four-wave 
coupling [6], the generation of dissipative rogue waves in a mode-
locked laser [7], the appearance of spatiotemporal rogue waves via 
optical filamentation [8], and the refocusing of the time-reversed 
rogue waves in deep water [9], to name a few. These experimen-
tal studies show that rogue waves possess some hallmark phe-
nomenological features, e.g., they are extremely large and steep 
compared with typical events, occur in a nonlinear medium, and 
follow an unusual L-shaped statistics [3,10,11]. Despite all this, the 
fundamental origin of these protean rogue wave phenomena is still 
far from being completely understood.

While the experimental investigation is booming in diverse 
physical contexts, much activity has been undertaken on the non-
linear dynamics which may contribute to shedding light on some 
of basic features of rogue waves, within the framework of inte-
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grable nonlinear wave equations [10]. It has now been generally 
accepted that the rational solutions, if localized on both space 
and time, can be appropriate for the rogue wave description. One 
typical, most-studied example is the Peregrine soliton [12], the 
simplest of a hierarchy of rational solutions of the scalar nonlin-
ear Schrödinger (NLS) equation. As it involves dynamics featuring 
a peak amplitude three times the background height and a dou-
ble localization on a finite background, such a rational soliton was 
frequently used as a prototypical profile for a single rogue wave 
event occurred in reality. Recent breakthroughs in observation of 
Peregrine soliton in deep water [4], plasmas [13], and an optical 
fiber [14] provide direct evidences for this hypothesis. Experiments 
also showed that the actual dynamics of the so-called super rogue 
waves can be well mimicked by the higher-order rational solutions 
whose peak amplitude increases progressively to a factor of more 
than five [5].

In many scenarios, several scalar waves or several components 
of a vector wave need to be considered in order to account for 
the significant interaction processes. Understanding the underly-
ing physics naturally requires consideration of the coupled system 
of equations rather than of the scalar model. Recently, the fun-
damental rogue wave solutions for some coupled integrable equa-
tions, such as the coupled NLS equations (or the Manakov system) 
[15–17], the Davey–Stewartson equation [18], the coupled Hirota 
(CH) equations [19], the Hirota–Maxwell–Bloch equations [20], and 
the two- or three-wave resonance equations [21–23], were ob-
tained, exhibiting intricate structures that are generally unattain-
able in the scalar NLS model. Of particular interest are the dark 
and composite structures; the former features a single hole on a 
nonzero background [19,21], while the latter can be identified as 

http://dx.doi.org/10.1016/j.physleta.2014.08.004
0375-9601/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.physleta.2014.08.004
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/pla
mailto:cshua@seu.edu.cn
http://dx.doi.org/10.1016/j.physleta.2014.08.004


JID:PLA AID:22765 /SCO Doctopic: Nonlinear science [m5G; v 1.134; Prn:6/08/2014; 15:59] P.2 (1-6)

2 S. Chen / Physics Letters A ••• (••••) •••–•••

1 67

2 68

3 69

4 70

5 71

6 72

7 73

8 74

9 75

10 76

11 77

12 78

13 79

14 80

15 81

16 82

17 83

18 84

19 85

20 86

21 87

22 88

23 89

24 90

25 91

26 92

27 93

28 94

29 95

30 96

31 97

32 98

33 99

34 100

35 101

36 102

37 103

38 104

39 105

40 106

41 107

42 108

43 109

44 110

45 111

46 112

47 113

48 114

49 115

50 116

51 117

52 118

53 119

54 120

55 121

56 122

57 123

58 124

59 125

60 126

61 127

62 128

63 129

64 130

65 131

66 132

a composite of two rogue waves which in form is characterized by 
the rational dependence on the fourth-order polynomials [22,23].

An issue closely related to the complex dynamics research is 
whether these rogue wave solutions can immune from small per-
turbations or how the modulational instability (MI) of the back-
ground fields develops. In the past few years, there appeared a 
number of significant works that were dedicated to this interest-
ing topic, mainly in the framework of the focusing NLS equation 
[24–26] or its extended form [27,28]. The MI and the related gen-
eration of deterministic rogue waves were also discussed in the 
parity-time (PT )-symmetric coupled NLS equations [29]. Most re-
cently, Grelu, Soto-Crespo, and the author showed numerically that 
the bright–dark rogue waves formed in a two-wave resonance sys-
tem could be stable in spite of the onset of MI [30].

In this Letter, we only explore the intriguing dark and com-
posite rogue wave dynamics in the CH equations, by presenting 
the rational solutions in an exact explicit form and in a perspic-
uous manner that the physics community can follow. The specific 
parameter conditions under which these dark or composite rogue 
waves can form will also be provided. In addition, we demonstrate 
further the possibility that different rogue wave structures can co-
exist for the same initial parameters.

2. The CH equations and exact rogue wave solutions

For our studies, we write the CH equations, in dimensionless 
form, as

iut + 1

2
uxx + (|u|2 + |v|2)u

+ iε
[
uxxx + (

6|u|2 + 3|v|2)ux + 3uv∗vx
] = 0, (1)

ivt + 1

2
vxx + (|v|2 + |u|2)v

+ iε
[
vxxx + (

6|v|2 + 3|u|2)vx + 3vu∗ux
] = 0, (2)

where u(t, x) and v(t, x) are the complex envelopes of the two 
fields, t is the evolution variable, and x is a second independent 
variable. The subscripts stand for the partial derivatives and the 
asterisk represents the complex conjugation. The real parameter ε
scales the integrable perturbations of the simple Manakov system. 
The terms inside square brackets in Eqs. (1) and (2) account for 
the third-order dispersion, self-steepening, and delayed nonlinear 
response effect, respectively. In optics, these higher-order nonlin-
ear and dispersive effects turned out to be non-negligible when 
the pulses become shorter than 100 fs [31]. Physically, because of 
these extra terms, such a coupled system can be more appropri-
ate than the Manakov one for describing the interaction of two 
surface waves (brought on by severe weather) in deep ocean [1]
and as well as for describing the propagation of ultrashort optical 
pulses in a birefringent fiber or simultaneous propagation of two 
fields in a nonlinear channel [32].

Mathematically, thanks to the integrability, Eqs. (1) and (2) can 
be solved by using an array of analytical tools such as the inverse 
scattering transform [33], the Riemann problem method [34], the 
Darboux transformation [35], the Hirota bilinear method [36], and 
others. Recently, we presented the fundamental rogue wave solu-
tions to Eqs. (1) and (2) by use of the Darboux transformation [19], 
but with their interesting dark structures and the related param-
eter conditions not clearly revealed. Particularly, a great variety of 
novel composite rogue wave dynamics as well as the remarkable 
coexistence feature were not unveiled yet for such a coupled sys-
tem. Our objective here is to find solutions to these basic problems.

As a matter of fact, the rogue wave solutions define the limit 
of either Ma solitons or Akhmediev breathers arising from the 
modulationally unstable plane waves [14,37]. For this reason, we 
introduce first the plane-wave solutions of Eqs. (1) and (2),

u0(t, x) = a

2ε
exp

[
− i

2ε

(
k1x − ω1

4ε
t

)]
, (3)

v0(t, x) = a

2ε
exp

[
− i

2ε

(
k2x − ω2

4ε
t

)]
, (4)

where a (> 0), k j , and ω j ( j = 1, 2) are real parameters and are 
connected by the dispersion relations

ω j = a2(3κ + 4) + k j
(
6a2 − k j − k2

j

)
. (5)

Here we define κ = k1 +k2 and δ = k1 −k2 and we assume k1 > k2
(i.e., δ > 0) without loss of generality. Moreover, for the sake of 
simplicity, we have assumed the two interacting field components 
to have an equal background amplitude.

Then, the fundamental rogue wave solutions, given by Eqs. (44) 
and (45) in Ref. [19], can be simplified to their most explicit forms, 
with the aid of separating the complex spectral parameter into the 
real and imaginary parts. The algebraic manipulations involved are 
fairly straightforward, and one can refer to Ref. [38] for technical 
details. Specifically, if δ � a, these rational solutions can be written 
explicitly as

u = u0

[
1 − 2iς2(3η + K )t + i(δ − η)ξ + 32ε2

	[(δ − η)2 + ς2]
]
, (6)

v = v0

[
1 − 2iς2(3η + K )t − i(δ + η)ξ + 32ε2

	[(δ + η)2 + ς2]
]
, (7)

where 	 = ξ2/(128ε2) + ς2(3η + K )2t2/(32ε2) + 8ε2/ς2 and ξ =
16εx + (R + 2ηK )t , with K = 3κ + 2, R = 3δ2 + 3κ2 + 4κ − 36a2, 
and two real parameters η and ς being defined by

η = ±
√

2

2

[√
δ2

(
8a2 + δ2

) − 4a2 + δ2]1/2
, (8)

ς =
√

2

2

[√
δ2

(
8a2 + δ2

) + 4a2 − δ2]1/2
. (9)

Otherwise, for δ < a, we can express the rogue wave solutions as

u = u0

[
1 − 2iK (4a2 − δ2 + 2η′ς)t + iδθ + 32ε2

Λ(2a2 + η′ς)

]
, (10)

v = v0

[
1 − 2iK (4a2 − δ2 + 2η′ς)t − iδθ + 32ε2

Λ(2a2 + η′ς)

]
, (11)

where Λ = θ2/(64ε2) + K 2(η′ +ς)2t2/(16ε2) +16ε2/(η′ +ς)2 and 
θ = 16εx + (R − 6η′ς)t , with η′ being given by

η′ = ±
√

2

2

[−
√

δ2
(
8a2 + δ2

) + 4a2 − δ2]1/2
. (12)

We need to point out that the solutions given by Eqs. (10) and (11)
can also be applied to the δ = a case, because they are identical to 
Eqs. (6) and (7) at this special parametric point.

Noteworthy, the above piecewise solution forms have been ex-
pressed as a ratio of second-order polynomials, with the real and 
imaginary parts being clearly separated so that the rogue wave 
dynamics can be readily analyzed. Meanwhile, we have translated 
both forms of solutions along the x axis to make their center ex-
actly on the origin. Obviously, due to the two-wave coupling, such 
rational solutions can exist in the whole parameter regime, differ-
ent from those in the scalar Hirota equation which only exist in 
a limited regime [28,39]. More significantly, as the real parameter 
η [in Eq. (8)] or η′ [in Eq. (12)] has two possible values for given 
parameters a and δ (excluding the case δ = a where η = η′ = 0), 
Eqs. (1) and (2) usually admit two families of fundamental rogue 
wave solutions that could coexist for the same initial parameters.

Nevertheless, for the very special case δ = a, Eqs. (1) and (2)
indeed allow a family of more general fundamental rogue wave 
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