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In this paper, we introduce a new approach which generalizes the GM2 algorithm (introduced in Sánchez-
Granero et al. (2008) [52]) as well as fractal dimension algorithms (FD1, FD2 and FD3) (first appeared 
in Sánchez-Granero et al. (2012) [51]), providing an accurate algorithm to calculate the Hurst exponent 
of self-similar processes. We prove that this algorithm performs properly in the case of short time series 
when fractional Brownian motions and Lévy stable motions are considered.
We conclude the paper with a dynamic study of the Hurst exponent evolution in the S&P500 index 
stocks.
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1. Introduction

The discussion about the underlying mechanism that governs 
stock markets remains still open for the last five decades. Thus, in 
financial literature coexist papers that defend the market efficiency 
with others that reject the hypothesis of efficiency.

From the beginning, several authors questioned the Efficient 
Market Hypothesis (EMH) (see [10,24,30]) and meanly specific as-
pects such as the consequences of using the normal distribution. 
The normal distribution allows to explain the evolution of stock 
market prices under the EMH and it has been the basis on which 
several famous market theories such as Mean Variance Portfolio 
Selection Theory [36,37], Capital Asset Pricing Theory [53], the 
Black–Scholes Model for Options Valuation [6,41] or the Modigliani 
& Miller Capital Structure Theory [42,43] have been developed.
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However, the collection of works looking for an alternative mar-
ket theory has grown since the nineties. In this way, the Fractal 
Market Hypothesis (FMH) introduced by Peters in [49] is the most 
popular among researchers due to its robustness (see [5,7,8,32,34,
59]). FMH focus on the concept of liquidity which provides smooth 
prices processes in the market. In illiquid scenarios, market be-
comes unstable and extreme movements may occur. Furthermore, 
the FMH is also connected to both ideas of fractality and multi-
fractality in market prices movements. Works about multifractality 
in stock markets have increased in the last years so we can quote 
[9,28,29,45] among others.

Therefore, the discussion about market efficiency has become 
a classical topic in finance. Indeed, it is related in some way with 
a Brownian motion as a model for the logarithm of the price of 
a stock (see for instance, [26,27]). On the other hand, an alternative 
is the study of long-memory in the series, which is usually done 
by assuming a fractional Brownian motion as a model for the loga-
rithm of the price of a stock. To study long-memory, researchers 
use the Hurst exponent and explicitly or implicitly, a fractional 
Brownian motion is used as a model of the series (see for example, 
[17,18,25,48]). There is even another research line which involves 
the use of Lévy stable motions as a model for the logarithm of the 
price of a stock. This model is especially interesting for stocks with 
strong movements, since it can account for a great volatility (see 
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for example, [13,14,22,46]). All the previous models to describe the 
evolution of financial series are particular cases of self-similar pro-
cesses (first appeared in [23]). In this way, recall that (fractional) 
Brownian motions are particular cases of Lévy stable motions. For 
the definition of these usual self-similar processes, we refer the 
reader to [15, Section 8.1], or the paper [14, Section 2].

The concept of market memory connects both the EMH and the 
FMH. Thus, the presence of memory in the market prices implies 
that the market is not efficient since the random walk hypothesis 
is automatically rejected.

The two most popular classical methods to explore market 
price memory are the R/S analysis, based on Hurst’s work [20]
and introduced in finance by Mandelbrot and Wallis [35], and the 
DFA introduced in [47]. Nevertheless, these methods have been 
widely criticized due to its lack of accuracy when the length of 
the time series is too short which is the case of financial time se-
ries (see for instance [26,52,57,58]). Other alternative techniques 
applied to deal with this problem are the Hudak’s Semiparamet-
ric Method (GPH) [16], the Quasi Maximum Likelihood analysis 
(QML) [19], the Generalized Hurst Exponent (GHE) [2], the Peri-
odogram Method [54], wavelets [56], the Centered Moving Average 
(CMA) [1], the multifractal detrended fluctuation analysis (MF-DFA) 
[21], non-linear tools such as the Lyapunov exponent [4,11], and 
recently, geometric method-based procedures [52] and fractal di-
mension algorithms [51]. Note that some of the previous methods 
are valid to study long-memory for fractional Brownian motions, 
others are also valid to study memory for Lévy stable motions, 
while only some of them work for the more general self-similar 
processes, as it is the case with the method we introduce in this 
paper.

The organization of the paper is as follows. In Section 2, we 
recall the definition and some properties of self-similar processes. 
In Section 3, we introduce a new approach that allows a common 
framework for geometric method-based procedures and fractal di-
mension algorithms, while in Section 4 we make some comments 
on the implementation of the algorithm. In Section 5, we test the 
new approach with fractional Brownian motions and Lévy stable 
motions and show that the algorithm works fine with those mo-
tions for any Hurst exponent value. Finally, in Section 6 we show 
a brief historic study of the Hurst exponent of the stocks in the 
S&P500 index and in Section 7 we present the main conclusions.

2. Self-similar processes and their increments

The results, definitions and notations that we recall next come 
from the theories of probability and stochastic processes and are 
necessary to formalize our ideas from a mathematical point of 
view. In this paper, we introduce a new accurate algorithm to 
efficiently estimate the self-similarity exponent of self-similar pro-
cesses, first introduced in [23]. Recall that this wide class of pro-
cesses includes the classical Brownian motions as well as some of 
their generalizations such as Lévy stable motions. In this way, some 
useful references are [12,14,33].

First of all, let (X, A, P ) be a probability space and let t ∈ [0, ∞)

denote time. It is said that the collection X = {X(t, ω) : t ≥ 0} is 
a random process or a random function if X(t, ω) is a random 
variable for all t ≥ 0 and all ω ∈ Ω (ω belongs to a sample space 
Ω). Hence, we can think of X as defining a sample function t �→
X(t, ω) for all ω ∈ Ω . Accordingly, the points of Ω parametrize 
the functions X : [0, ∞) → R and P is a probability measure on 
this class of functions.

Let X(t, ω) and Y (t, ω) be two random functions. We write 
X(t, ω) ∼ Y (t, ω) to denote that the two preceding random func-
tions have the same finite joint distribution functions.

Additionally, let us also recall the next definition. It provides the 
description of a wide range of random processes which play a key 

role in the study of long-memory of financial time series as well 
as some properties about the increments of that random functions.

Definition 2.1.

(1) (See [23].) A random process X = {X(t, ω) : t ≥ 0} is said to be 
H-self-similar if for some parameter H > 0, it is verified that

X(at,ω) ∼ aH X(t,ω), (1)

for all a > 0 and t ≥ 0. Here, the parameter H is called the 
self-similarity index or exponent of X. So, Eq. (1) states that 
every change of time scale a > 0 leads to a change of space 
scale aH in the case of H-self-similar random processes. Fur-
ther, the bigger H , the more drastic is the change of the space 
variable. Note that Eq. (1) provides a scale-invariance of the 
finite dimensional distribution of X.

(2) (See [33].) The increments of a random function X(t, ω) are 
said to be:
(a) stationary, if for all a > 0 and all t ≥ 0, it is verified that

X(a + t,ω) − X(a,ω) ∼ X(t,ω) − X(0,ω).

(b) self-affine with parameter H ≥ 0, if for any h > 0 and any 
t0 ≥ 0,

X(t0 + τ ,ω) − X(t0,ω)

∼ 1

hH

{
X(t0 + hτ ,ω) − X(t0,ω)

}
. (2)

If X(t, ω) ∼ Y (t, ω), then we have that X(t, ω) − X(t0, ω) is a 
semistable stochastic process in the sense of Lamperti [23] for all 
t ≥ t0 (see [33]). The semistability of a random process is a weaker 
property than the self-affinity of the corresponding increments, 
since it is verified that if a random process X is semistable with 
parameter H and has stationary increments, then X is the restric-
tion to t ≥ 0 of a random process with self-affine increments with 
parameter H [33].

Moreover, due to [33, Corollary 3.6], if a random function 
X(t, ω) has self-affine increments with parameter H , then a T H -
law is verified as follows:

M(T ,ω) ∼ T H M(1,ω), (3)

where M(T , ω) is the T -period cumulative range of the random 
function X(t, ω), given by

M(t, T ,ω) = sup
s∈[t,t+T ]

{
X(s,ω) − X(t,ω)

}

− inf
s∈[t,t+T ]

{
X(s,ω) − X(t,ω)

}
, (4)

and M(T , ω) = M(0, T , ω). In particular, if X is a fractional Brow-
nian motion (FBM for short), then we can replace sup and inf by 
max and min, respectively, in Eq. (4) (see [33, Proposition 4.1]).

Another interesting result we would like to point out estab-
lishes that any H-self-similar random process with stationary in-
crements has self-affine increments with parameter H (see [55, 
Lemma 3.4]), so Eq. (3) is again verified. But what is more: the 
reciprocal is also true, that is, any random process X with self-
affine increments with parameter H and such that X(0, ω) = 0 is 
H-self-similar. Indeed, just take t0 = 0 in Definition 2.1 (2)(b).

3. Introducing the FD approach

This section has several purposes. First, we mathematically mo-
tivate and introduce our new approach which will allow us to ac-
curately estimate the Hurst exponent of self-similar processes (as 
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