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We show how to generate and control the correlations in a set of two distant quantum emitters coupled 
to a one-dimensional dissipative plasmonic waveguide. An external laser field enhances the dimer’s 
steady-state correlations and allows an active control (switching on/off) of nonclassical correlations. 
The plasmon-assisted dipolar-interacting qubits exhibit persistent correlations, which in turn can be 
decoupled and made to evolve independently from each other. The setup enables long-distance (∼ 1 μm) 
qubit control that works for both resonant and detuned emitters. For suitable emitter initialization, 
we also show that the quantum correlation is always greater than the classical one.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The construction of large quantum networks with controllable 
long-distance coupling of qubits is one of the key goals in quan-
tum information science [1]. To generate the required qubit–qubit 
correlations (microwave or optical) photons are typically used. Re-
cently, a novel approach based on single quantum emitters cou-
pled to one-dimensional plasmonic waveguides has been proposed, 
and entanglement of qubits mediated by surface plasmons in such 
a setup has been explored [2,3]. Surface plasmons are collec-
tive excitations that have become an important physical resource 
in many applications in physics, chemistry, and materials science 
[4,5]. In particular, the coupling of single emitters to plasmonic 
structures [6–8] has attracted substantial attention, because it al-
lows the manipulation of the emission properties as well as the 
enhancement of the interaction between quantum emitters in the 
vicinity of these structures [9–11].

Non-local quantum correlations and entanglement in quantum 
systems under the action of decoherence effects have been ardu-
ously investigated not only because of their fundamental physical 
implications (see e.g., [12–14]), but also because of their utmost 
relevance to the development of novel quantum technologies [1]. 
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The influence of the system-bath coupling over the reduced sys-
tem’s quantum correlations has been studied in different physical 
systems such as quantum dots [15], superconducting qubits [16], 
atoms and photons [17], and biomolecular systems [18], to cite just 
but a few. We have recently reported on the distribution of classi-
cal and quantum correlations that arise in a bipartite emitter sys-
tem coupled to a plasmonic waveguide [19]. We have shown that 
such quantum correlations are more robust through the dissipative 
dynamics than the classical ones, for several experimentally ac-
cessible scenarios, and that the emitters collective properties that 
arise from the interaction with the plasmons allow an additional 
degree of quantum control on the correlations dynamics [19,20].

In this Letter, we give a protocol for actively enabling a 
plasmon-assisted long-distance (about 1 μm) qubit conditional dy-
namics between emitters which are externally-driven by a coher-
ent laser field. Such a quantum mechanism works for both reso-
nant and detuned qubits, and is optimized by laser pumping and 
by tailoring the separation between the emitters. Moreover, from 
the dimer’s conditional entropy, we analytically identify specific 
conditions for which the quantum correlation is always greater 
than the classical correlation (cf. [21–23]).

In Section 2 we introduce the quantifiers of quantum and clas-
sical correlations, and the corresponding quantum master equation 
used to describe the emitters’ dissipative dynamics is given in 
Section 3. The quantum control that arises from the correlations 
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dynamics is set for: resonant emitters without laser excitation 
(Section 4), resonant emitters under the action of a coherent laser 
field (Section 5), and for emitters with different transition ener-
gies (Section 6). Concluding remarks are given in Section 7.

2. Quantum correlations

The quantum mutual information I(ρAB) = S(ρA) + S(ρB) −
S(ρAB) gives a measure of the total correlation in a bipartite 
qubit state ρAB [23–25], and this may be separated into purely 
quantum—Q(ρAB ) (e.g., via the quantum discord D(ρAB )) [25–27]
and classical correlation—C(ρAB ) [21]: I(ρAB) =Q(ρAB) +C(ρAB). 
The details of calculation of C and Q are left to Appendix A. The 
von Neumann entropy S(ρ) = − Trρ log2 ρ , and ρA(B) = TrB(A) ρAB

is the reduced density operator of the partition A(B). Discord has 
been linked to the computational speedup in an efficient model of 
quantum computation [28] and has been pinpointed as a valuable 
resource in quantum information protocols [29,28].

Although Lindblad conjectured that, for any quantum state, 
C(ρ) ≥ Q(ρ) [23,21,22], we give an entropy condition for which 
the quantum correlation is always greater than the classical 
one [30,20]: since I = Q + C , we ask if the inequality I − 2C ≥ 0
is ever met. The sought entropy bound reads

2S(ρA|Π B
j
) − S(ρAB) + S(ρB) − S(ρA) ≥ 0, (1)

where S(ρA|Π B
j
) = min{Π B

j }{
∑

j p j S(ρA|Π B
j
)}, S(ρA|Π B

j
) is the en-

tropy associated to the density matrix of subsystem A after the 
measure. Eq. (1) is indeed satisfied, at all times, for suitable reso-
nant emitters.

To distinguish the quantum correlations that arise for en-
tangled states and separable states, we quantify the emitters’ 
entanglement via the entanglement of formation EF . For two-
qubit systems, EF (ρAB) = ε([1 + √

1 − C2(ρAB)]/2), where ε(r) =
−r log2 r − (1 − r) log2(1 − r) denotes the binary entropy function, 
and the concurrence C(ρAB ) = max{0, λ1 − λ2 − λ3 − λ4}, where 
the λi ’s are, in decreasing order, the eigenvalues of the matrix √

ρAB ρ̃AB ; ρ̃AB = (σy ⊗ σy)ρ̄AB(σy ⊗ σy), ρ̄AB is the elementwise 
complex conjugate of ρ , and σy is the Pauli matrix [31]. This en-
tanglement metric is of entropic character and can be compared 
on the same grounds with the discord [19].

3. Plasmon–emitter master equation

We consider a pair of distant emitters that act as a dipole–
dipole two-qubit system via the interaction with the plasmon 
modes in a metallic nanostructure. The total Hamiltonian of the 
system plus environment can be written as (h̄ is the reduced 
Planck’s constant):

Ĥ = Ĥ S + Ĥ E + Ĥint =
2∑

i=1

1

2
h̄ωiσ̂

(i)
z

+
∫

d3r
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0

dωh̄ω f̂ †
ω(r) f̂ω(r) −

2∑
i=1

μ̂i · Ê(ri), (2)

where the first two terms denote the free energy of the two-
qubit system and the free energy of the electromagnetic field 
represented by a bosonic bath, respectively; σ̂ (i)

z is the z Pauli 
matrix associated to the i-th emitter of transition frequency ωi , 
and f̂ω(r), and f̂ †

ω(r) are the bosonic excitation operators of the 
quantized electromagnetic field with the usual commutation rela-
tions [ f̂ω(r), f̂ †

ω′ (r′)] = δ(ω − ω′)δ(r − r′), and [ f̂ω(r), f̂ω′ (r′)] =

[ f̂ †
ω(r), f̂ †

ω′ (r′)] = 0. The last term represents the interaction be-

tween the dipole operator μ̂ = μi σ̂
(i)
+ + μ∗

i σ̂
(i)
− and the quan-

tized field operator Ê(r) = Ê+(r) + H.c., where σ
(i)
+ = |1i〉〈0i |

(σ (i)
− = |0i〉〈1i |) are the raising (lowering) Pauli operators acting 

on emitter i (|0〉 and |1〉 denote the ground and first excited 
state which represent the qubit computational basis), and Ê+(r) =∫ ∞

0 dω Ê(r, ω) is the positive frequency part,

Ê(r,ω) = i

√
h̄

πε0
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∫
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(
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The Green’s tensor G(r, r′, ω) satisfies the Maxwell–Helmholtz 
wave equation, supports the electromagnetic interaction from r′
to r, and contains all the information about the coherent and inco-
herent properties of the system, i.e., about the dipole–dipole shift 
and the different channels of radiation through the vacuum (far 
field) and through the metal. ε′′(r, ω) is the imaginary part of the 
electric permittivity of the metal, and this is considered as a con-
stant value corresponding to the permittivity of the silver at the 
operational wavelength described here, and ε0 is the permittivity 
of the vacuum.

The dynamics of the total system (emitters plus electromag-
netic field) can be derived in the Schrödinger picture from the 
Liouville–von Neumann equation ρ̇S−E = − i

h̄ [Ĥ, ρS−E ], which, in 
the interaction picture (denoted by the superscript I), can be writ-
ten as the following integro-differential equation

ρ̇ I
S−E(t) = − i

h̄

[
Ĥ I

int(t),ρ
I
S−E(0)

]

− 1

h̄2

t∫
0

dt′[Ĥ I
int(t),

[
Ĥ I

int

(
t′),ρ I

S−E

(
t′)]], (3)

where ρ I
S−E(t) = ei(Ĥ S +Ĥ E )t/h̄ρS−E e−i(Ĥ S +Ĥ E )t/h̄ , and Ĥ I

int(t) =
ei(Ĥ S +Ĥ E )t/h̄ Ĥinte−i(Ĥ S +Ĥ E )t/h̄ . Here, we consider atom-like (small) 
emitters with an operational wavelength in the optical frequency 
regime (we use λ0 = 640 nm) coupled to a broadband plas-
monic waveguide. We perform the Born–Markov approximation 
(ρ I

S−E(t′) = ρ I (t′) ⊗ ρE(0), and ρ I (t′) → ρ I (t)) in order to solve 
Eq. (3) due to the weak coupling between the emitters and the 
plasmonic electromagnetic field [2,3,11,32]. Additionally, we avoid 
rapidly oscillating terms much higher than ωi by applying the 
rotating wave approximation (RWA) to the interaction part of 
the Hamiltonian in Eq. (2), such that Ĥint = −μ1σ

(1)
+ Ê†(r1) −

μ2σ
(2)
+ Ê†(r2) + H.c.

Tracing out Eq. (3) over the environment degrees of freedom, 
and going back to the Schrödinger picture we can, under the above 
assumptions, describe the dimer’s dissipative dynamics by means 
of the following quantum master equation [11,20,33]

ρ̇ = i

h̄
[ρ, Ĥeff]

−
2∑

i, j=1

Γi j

2

(
ρσ

(i)
+ σ

( j)
− + σ

(i)
+ σ

( j)
− ρ − 2σ

(i)
− ρσ

( j)
+

)
, (4)

where the effective dimer’s Hamiltonian Ĥeff = Ĥ S + Ĥ12 + Ĥ L con-
tains the coherent dipole–dipole shift Ĥ12 = 1

2 h̄V (σ
(1)
x ⊗ σ

(2)
x +

σ
(1)
y ⊗σ

(2)
y ), and the laser–qubit interaction Ĥ L (see Section 5). The 

strength of the effective dipole–dipole interaction is calculated as:

V = 1

πε0c2h̄
P

∞∫
0

dω
ω2 Im[μ∗

1G(ω, r1, r2)μ2]
ω − ω0

, (5)
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