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A method to determine parameters governing periodic Riemann theta function rogue-wave solutions 
to the nonlinear Schrödinger equation is presented. A map of parameter values leading to candidate 
solutions is developed. In addition to candidate solutions, an overview of qualitative aspects of 
the solution space can be gained from this map. Based on these findings, several new extreme wave 
solutions are presented. Although the computations required to determine the map are quite demanding, 
it is shown that these computations can be efficiently accelerated with a parallel computing architecture. 
A general purpose computing on a graphics processor unit (GPGPU) implementation yielded a 400×
acceleration over a single threaded high level implementation. This acceleration enabled exploration 
and examination of the solution space, which otherwise would not have been possible. In addition, 
the solution methodology presented here can be extended to explore other classes of solutions.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The nonlinear Schrödinger equation (NLSE) has been used to 
model extreme waves in many domains. The NLSE admits the 
Benjamin–Feir (modulational) instability [1], which has been pro-
posed as one of the mechanisms for rogue-wave formation [2]. For 
this reason, it is often used as a model for extreme wave behavior. 
Several families of analytical solutions have been determined for 
the NLSE. Much of the motivation in developing these solutions 
is to model physical rogue waves. These waves can appear on the 
surface of the ocean, in fiber optical systems, or in other domains 
as well.

Some of the first analytical solutions to the NLSE were pre-
sented by Tracy [3]. Other contributions to determining analytical 
solutions of the NLSE include those due to Akhmediev and Ko-
rneev [4], who determined a family of single parameter solutions. 
Based on finite gap integration, Smirnov [5] constructed a family 
of two-gap solutions and derived conditions under which they be-
have as rogue waves. He extended this work to periodic two phase 
and three phase solutions in another study [6]. He was able to 
show that these solutions lead to rogue-wave type behavior when 
the eigenvalues are close and have large imaginary components. 
In addition, Smirnov [7] presented rogue wave type elliptic solu-
tions to the NLSE. These solutions, based on three parameters, are 
distinct from Akhmediev’s previously discovered elliptic solutions, 
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which are not considered to be rogue-wave type solutions. Further-
more, the three parameter elliptic rogue-wave solutions degenerate 
to Akhmediev breathers and Peregrine solitons for certain choices 
of parameters. A review of nonlinear optical waves, including exact 
solutions to the nonlinear Schrödinger equation, nonlinear interfer-
ence, and soliton behavior in dispersive media is available in the 
book by Akhmediev and Ankiewicz [8]. Different groups have de-
termined other families of rogue-wave type solutions to the stan-
dard NLSE. Notably, Akhmediev, Soto-Crespo, and Ankiewicz [9]
identify the interference of Akhmediev breathers (ABs) as leading 
to a type of rogue-wave solution. They show that properly phased 
AB collisions can result in rogue waves and suggest it as a method 
to explain and possibly provoke rogue waves in optical fibers.

Akhmediev, Ankiewicz, and Soto-Crespo [10] have also deter-
mined a family of rational solutions to the NLSE. The rational so-
lutions are determined by taking a modified Darboux transform of 
a specially chosen seed solution. They have successfully tested for 
the presence of rational solutions in a randomly perturbed wave 
field. A system governed by the NLSE was excited with a plane 
wave with random perturbations. Regions of large amplitudes were 
identified and found to match almost identically to the envelope 
predicted by the rational solutions.

Several groups have verified the analytically predicted solutions 
with experimental results. The Peregrine soliton, which is a limit-
ing form of several families of analytical rogue-wave solutions, has 
been studied in a fiber optic cable [11]. In turn, several analytically 
predicted extreme waves have been demonstrated experimentally 
in optical fibers [12] and water wave tanks [13,14]. In each case, 
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the observed rogue waves have been modeled after solutions to 
the NLSE. Finally, Dysthe [15] has introduced a higher order ap-
proximation to the wave equation, and this equation is called the 
Dysthe equation. This equation is considered to provide a more 
accurate model of extreme wave behavior under certain condi-
tions.

To further contribute to the advancement of the physical real-
ization of rogue-wave solutions to the NLSE, in the present work, 
the authors offer a method to computationally determine param-
eters of theta functions which result in as of yet undiscovered 
rogue waves. While the theta function form of rogue waves is 
well known [3], the realization of particular theta function solu-
tions enabled by this work enables new physical forms of extreme 
waves not yet available in the literature. One key aspect of the 
method, the GPU map, provides an overview of the possible so-
lution parameters. This presentation format provides the analyst 
with a broad view of the parameter space. Such a broad view can 
stimulate intuition about governing features of the space, and al-
low the investigation of sparse regions of the space which would 
be otherwise difficult to discover.

The scaled NLSE takes the form [16]

iut − uxx + 2σ |u|2u = 0 (1)

where u(x, t) is the complex wave envelope field, t is time, x is the 
spatial variable, i = √−1, the subscripts indicate the correspond-
ing partial derivatives, σ = −1 yields the focusing case, and σ = 1
yields the defocusing case.

The inverse scattering transform was used by Shabat and Za-
kharov [17] to develop analytic solutions of the NLSE. The solution 
space can be viewed as having a nonlinear Fourier structure, which 
is comprised of stable and unstable modes. Nonlinear interactions 
can occur between these modes based on associated eigenval-
ues [18]. The unstable modes are potential “rogue-wave” solutions. 
These modes can be expressed in terms of Riemann-theta func-
tions. In this work, the authors provide a procedure to solve for 
certain unstable “rogue-wave” modes.

Nayfeh and Balachandran [19] showed how externally forced 
nonlinear systems may exhibit chaotic dynamics and wave behav-
iors in a variety of physical systems. Given the current state of 
understanding of solutions of the NLSE, as of yet unknown rogue-
wave solutions may be critical to further the understanding of 
instabilities and extreme behaviors of many systems. Several so-
lutions to the NLSE are already known, and motivate the search 
for more solutions. The Peregrine soliton is a well-known extreme 
wave solution [20]. Akhmediev, Ankiewicz, and Taki [21] have de-
tailed exact expressions for rational solutions, which can be used 
to describe rogue waves. Ma and Ablowitz [22] have provided a 
solution methodology for obtaining spectral solutions for periodic 
boundary conditions for both the focusing and defocusing cases. 
Here, the authors consider solutions to the focusing NLSE for peri-
odic boundary conditions. A new approach is offered to determine 
parameters that correspond to rogue-wave solutions. Furthermore, 
the fundamental steps outlined in this parameter selection ap-
proach are not restricted to theta function based solutions. Major 
contributions of this effort are the following: (a) a description of 
a general procedure to choose likely Riemann theta function so-
lutions to the NLSE and (b) exploration of the parameter space 
governing possible wave solutions through GPU computing.

The remainder of the article is organized as follows. In the 
next section, a map of candidate solutions is developed. Next, the 
predictor–corrector solution procedure is described. Based on the 
predictor-correct procedure, several rogue-wave solutions are de-
termined and presented. Following that, concluding remarks are 
collected and presented together at the end.

Fig. 1. Flow chart illustrating the procedure to discover Riemann theta function de-
scribed rogue waves.

2. Rogue-wave formations: computational formulation, 
solutions, and features

The goal of this work is to present a procedure, based on a 
predictor–corrector style framework, which allows the discovery 
of a certain form of rogue-wave solution to the NLSE. The steps 
involved are summarized in the flowchart given in Fig. 1 and ex-
plained with the aid of Eqs. (2) to (18) included in this section. 
Through GPU computing, this procedure allows an investigator to 
explore the parameter space, for possible solutions of Eq. (2). In 
the predictor step, a map of parameters which result in periodic 
functions, ψ(x, 0), is generated. A particular combination of param-
eters that has a high likelihood of resulting in a rogue wave can 
then be determined. In the corrector step, the parameters are con-
clusively refined by solving the spectral eigenvalue problem, shown 
in Eq. (12), based on the initial guess. In the verification step, a 
candidate solution is formed by substituting the corrected param-
eters into Eq. (2). The candidate solution is verified by numerically 
evaluating the NLSE to determine a residual of zero. The candidate 
solution is put through two numerical tests, a successful comple-
tion of which leads to the acceptance of the candidate solution as 
a solution. These steps are described in more detail below.

2.1. Predictor

Space periodic spectral solutions to the NLSE can be described 
by

ψ(x, t) = A
Θ(x, t|τ , δ−)

Θ(x, t|τ , δ+)
e2i A2 T (2)

where Θ(x, t|τ , δ±) is a Riemann theta function [3,23,24]. A sin-
gle unstable mode can be considered by taking Θ(x, t|τ , δ±) as a 
two-dimensional theta function defined as

Θ
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]
(3)

The parameters governing the theta function (Kn , Ωn , and δ±) 
are defined in terms of five spectral parameters A, λR , λI , ε0, 
and θ . Following the notation used in earlier work [25], the spec-
tral parameters are defined as

ε1 = ε0eiθ , ε2 = ε∗
1 , σ1 = 1, σ2 = −1 (4)

λ1 = λR + iλI , λ2 = λ∗
1 (5)
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