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Recurrence quantification analysis (RQA) is useful in analyzing dynamical systems from a time series 
s(t). This paper investigates the robustness of RQA in detecting different dynamical regimes with respect 
to the recorded variable s(t). RQA was applied to time series x(t), y(t) and z(t) of a drifting Rössler 
system, which are known to have different observability properties. It was found that some characteristics 
estimated via RQA are heavily influenced by the choice of s(t) in the case of flows but not in the case of 
maps.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Biological systems are complex as they have a huge number of 
components and degrees of freedom that interact with the envi-
ronment in subtle ways. Mathematical modeling and analysis of 
such systems is a challenge. Interactions with the environment or 
with another system that result in a qualitatively different dynam-
ics, can be represented by a change in a bifurcation parameter. In 
the case of relatively slow changes, this leads to a drifting behavior 
which is a common type of nonstationarity, an additional difficulty 
that has to be dealt with in practice [1–3]. Often, the measurement 
process itself restricts the type of analyses that can be performed, 
because it gives access only to a few variables of the system.

The ability of recurrence plots (RPs) and recurrence quantifi-
cation analysis (RQA) to localize bifurcation behavior in drifting 
systems, without any a priori hypothesis of the equations of mo-
tion, is known [4–7]. By “drifting” we mean slowly time-varying. 
These features are particularly important in the analysis of data 
series of biological systems, intrinsically nonstationary. Originally, 
RPs were introduced to visually distinguish different dynamical 
behaviors in time series, since periodic, chaotic and random be-
haviors generate distinct structures in the RPs [4]. Subsequently, 
RQA was introduced to quantify the properties of RPs [5]. One of 
the first demonstrations of RQA capabilities was a windowed anal-
ysis of the times series of a drifting logistic map, in which several 
RQA variables were sensitive to bifurcation behavior [6]. The RQA 
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detection of bifurcations, discussed in the context of maps [6], has 
been applied to time series of flows, not only to detect bifurcations, 
but also to quantify other dynamical features [3,8,9]. Unfortunately, 
some characteristics calculated using RQA are very sensitive to 
user-specified parameters, such as recurrence thresholds, and there 
is no agreement as how to choose such parameters [7].

Recently, a link was established between observability and em-
bedding theory, demonstrating that the effectiveness of numerical 
algorithms in quantifying the dynamical features of a system is 
sometimes highly determined by the variable chosen to reconstruct 
its dynamics [10–12].

Given the growing importance of RQA in a number of simu-
lated and experimental problems, it is only natural to wonder to 
what extent does the choice of the recorded variable influence the 
performance of RQA. In the present work, such robustness is inves-
tigated, thus illustrating that observability might influence RQA. In 
addition to this, another contribution of this work is the investi-
gation of the aforementioned issues in the context of flows rather 
than maps, as discussed in [6]. To this end, the drifting Rössler sys-
tem is used because of its clear-cut observability properties. The 
reported results show that, depending on the recorded variable 
used, some transitions between dynamic regimes are less visible 
when RQA is performed and some are especially hard to detect.

The present work is organized as follows. Section 2 provides 
some background. The procedure to generate three time series of 
the drifting Rössler system, for each of the variables x, y and z
is defined in Section 3. Such variables can be ranked as y � x � z
in terms of observability [11,12]. In Section 4 it is found that some 
characteristics of RQA are insensitive to bifurcations when the vari-
able z is used. The RQA variables are evaluated using the Poincaré 
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section of the flow in Section 5, in order to compare the impact 
of the variables chosen to reconstruct the dynamics on the RQA 
of flows and maps. The results are discussed in Section 6 and the 
main conclusions are pointed out in Section 7.

2. Background

2.1. Observability

In this section we briefly review the observability coefficients 
as defined in [11]. Consider the autonomous system ẋ = f (x), 
where x ∈ R

n is the state vector and f : Rn �→ R
n is the vector 

field. Consider further the measuring function h : Rn �→ R such 
that s(t) = h(x), where s ∈ R is the observable. Differentiating s(t)
yields

ṡ(t) = d

dt
h(x) = ∂h

∂x
ẋ = ∂h

∂x
f (x) = L f h(x), (1)

where L f h(x) is the Lie derivative of h along the vector field f . 
The jth-order Lie derivative is given by [13, p. 8]:

L j
f h(x) = ∂L j−1

f h(x)

∂x
· f (x), (2)

where L0
f h(x) = h(x). The time derivatives of s can be written in 

terms of Lie derivatives as s( j) = L j
f h(x). The observability matrix 

can be written as [14]:

Os(x) =

⎡
⎢⎢⎣

∂L0
f h(x)

∂x
...

∂Lm−1
f h(x)

∂x

⎤
⎥⎥⎦ , (3)

where the index s indicates that Os(x) refers to the system ob-
served from s(t). The system is observable from s(t) if Os(x) is 
full rank. This classical definition of observability yields “yes–no” 
answers and poorly observable systems are (correctly) classified as 
observable.

In order to rank the quality of the system variables in conveying 
dynamical information, it is helpful to assess how far is Os(x) from 
being rank-deficient. This can be achieved computing a coefficient 
δs that quantifies the numerical ill-conditioning of such a matrix 
along a trajectory x(t) when the recorded variable is s(t). Hence

δs(x) = |λmin[Os(x)T Os(x)]|
|λmax[Os(x)T Os(x)]| , (4)

where λmax[Os(x)TOs(x)] indicates the maximum eigenvalue of 
matrix Os(x)TOs(x) estimated at point x(t) (likewise for λmin). 
Then 0 ≤ δ(x) ≤ 1, and the lower bound is reached when the sys-
tem is not observable at point x. Coefficient δs(x) in (4) is a type 
of condition number of the matrix Os(x)TOs(x). Averaging δs(x)

along a trajectory over the interval t ∈ [0; T ] yields the observ-
ability coefficient

δs = 1

T

T∑
t=0

δs
(
x(t)

)
. (5)

The challenges of evaluating observability from data, i.e. with-
out knowing the system equations, have been discussed in [12].

2.2. Recurrence quantification analysis

The RQA technique was initially proposed by Webber and Zbilut 
[5,15] to quantify the qualitative information of recurrence plots 

(RP) formulated by Eckmann et al. [4]. Given a time series {x}, a re-
currence matrix Ri, j(ε) is constructed by the N time-ordered em-
bedded vectors in m-dimensional space { �Xi}N

1 ∈R
m by the rule [7]:

Ri, j(ε) = Θ
(‖�Xi − �X j‖ − ε

)
, i, j = 1, ..., N. (6)

A recurrence situation happens when the distance between �Xi
and �X j is less than a threshold ε . In that case, the Heaviside Θ
function returns 1, otherwise it returns 0. The typical RP is a dia-
gram of Ri, j(ε) where black dots are used to indicate the 1s and 
the 0s are left blank.

The recurrence structure of Ri, j(ε) can be quantified by indices, 
some of which are presented in the sequel. The density of recur-
rent points in the RP is the recurrence rate, often expressed in 
percentage as:

%REC = 1

N2

N∑
i, j=1

Ri, j(ε) × 100%. (7)

The so called “determinism” coefficient is the percentage of recur-
rent points that form diagonal lines with minimum length lmin

%DET =
∑N

l=lmin
lP (l)

∑N
l=1 lP (l)

× 100%, (8)

where P (l) is the frequency distribution of diagonal lines of length 
l parallel to the identity line. lmin must be small because a large 
value could result in a sparse histogram P (l). On the other hand, 
lmin should be sufficiently large to exclude the diagonal lines 
formed by tangential motion of the trajectory in phase space [7].

The Shannon entropy of line segment distributions was defined 
as

ENTR = −
N∑

l=lmin

p(l) ln p(l), (9)

and is based on the probability that a diagonal line in the RP has 
length l, that is, p(l) = P (l)/Nl , where Nl is the total number of 
valid lines (l ≥ lmin).

The inverse of the longest diagonal line is by definition the di-
vergence

DIV = (
max

({li}Nl
i=1

))−1
, (10)

which is expected to be correlated to the largest Lyapunov expo-
nent λmax [4,6,16].

An index related to (9) was defined as [17]

S = −
N∑

l=1

Pnr(l) ln Pnr(l), (11)

where Pnr(l) is the number of diagonal lines formed by nonrecur-
rent points (Ri, j = 0) divided by the number of recurrent points. 
A correction to the algorithm in [17] is given by the same author 
at http :/ /www.atomosyd .net /spip .php ?article74.

2.3. Numerical setup

In order to investigate the impact of the recorded variable on 
RQA, a benchmark system plus a set of indices must be chosen.

Trulla et al. [6] applied the RQA to a drifting logistic equation 
and reported that the indices (7)–(10) are sensitive to the dynam-
ical regime, and therefore can be used to indicate the transitions: 
periodic–periodic, periodic–chaotic and chaotic–periodic. Hence a 
drifting system seems adequate as a benchmark for RQA. Because 
one of the objectives of this work is to investigate the effects 
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