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We consider the Suslov problem of nonholonomic rigid body motion with inhomogeneous constraints. 
We show that if the direction along which the Suslov constraint is enforced is perpendicular to a principal 
axis of inertia of the body, then the reduced equations are integrable and, in the generic case, possess 
a smooth invariant measure. Interestingly, in this generic case, the first integral that permits integration 
is transcendental and the density of the invariant measure depends on the angular velocities. We also 
study the Painlevé property of the solutions.

© 2014 Elsevier B.V. All rights reserved.

1. Motivation

In this paper we consider the motion of a rigid body under 
the constraint that a certain component of the angular velocity 
vector, as seen in the body reference frame, is constant. If such 
a constant vanishes we recover the classical Suslov problem [13]. 
In other cases, we have an affine or inhomogeneous generalization 
of the problem.

Our motivation to treat this problem is twofold. On the one 
hand, it is a toy example for nonholonomic systems with affine 
constraints. A classical example of such systems is a ball that 
rolls without slipping on a rotating plane. This type of systems 
has received attention in the field of nonlinear control theory (see 
e.g. [11] and references therein).

On the other hand, despite its simplicity, the inhomogeneous 
Suslov problem is interesting in its own right. Indeed, we prove 
that, for certain parameter values considered in Section 4.1, the 
system provides an example of a mechanical problem that pos-
sesses an invariant measure whose density depends on the angular 
velocities, which is an extremely rare phenomenon in mechanics.1
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1 For a discussion on the existence of invariant measures for nonholonomic 
mechanical systems of kinetic type subjected to linear homogeneous constraints, 
see [5] and the references therein.

We also show that the reduced system is integrable due to the ex-
istence of a transcendental first integral.

A closely related system to the one considered in this paper 
is the inhomogeneous Veselova problem. Here one considers the 
motion of a rigid body subjected to the constraint that a certain 
component of the angular velocity as seen in the inertial reference 
frame is constant. This system has been considered in [3].

2. Definition of the problem

Consider the motion of a rigid body under its own inertia sub-
jected to the constraint

a · Ω = K ,

where K ∈ R is constant. In the above, a ∈ R
3 is a fixed unit vec-

tor in the body frame and Ω ∈ R
3 is the angular velocity of the 

body also written in the body frame. In the case where K = 0 we 
recover the classical nonholonomic Suslov problem.

Apparently Suslov [13] suggested a mechanism to physically 
implement such a constraint that is described in [1].

Denote by I the inertia tensor of the body. It is a symmetric, 
positive definite 3 ×3 matrix. The equations of motion are obtained 
via the Lagrange d’Alembert principle that yields

IΩ̇ = IΩ × Ω + λa, (1)
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where the Lagrange multiplier λ is determined by the condition 
that the constraint is satisfied and “×” denotes the vector product 
in R3.

Differentiating the constraint and using the equation of motion 
we obtain

λ = − (IΩ × Ω) · I−1a

a · I−1a
.

With the above choice of λ the equations of motion (1) preserve 
the quantity a · Ω . The physical system of interest is obtained by 
considering the motion on the level set a · Ω = K .

Note that the energy of the system, H = 1
2 IΩ · Ω is only pre-

served on the level set K = 0. The inhomogeneous constraint adds 
or takes away energy from the system.

We will assume that the body frame is oriented in such a way 
that the vector a = (0, 0, 1). The constraint is then Ω3 = K . With-
out loss of generality, we can also assume that the entry I12 of the 
inertia tensor vanishes. Thus, the inertia tensor has the form

I =
⎛
⎝ I11 0 I13

0 I22 I23
I13 I23 I33

⎞
⎠ .

In this case we find that the equations for Ω1, Ω2 on the level set 
Ω3 = K are given by:

I11Ω̇1 = −Ω2(I13Ω1 + I23Ω2) + Ω2(I22 K − I33 K ) + I23 K 2,

I22Ω̇2 = Ω1(I13Ω1 + I23Ω2) + Ω1(−I11 K + I33 K ) − I13 K 2.

(2)

The case where K = 0 corresponds to the classical Suslov prob-
lem that has been studied in detail. In this case there are two 
distinct cases of qualitative motion.

1. If the vector a is an eigenvector of the inertia tensor I, then I

is diagonal (I13 = I23 = 0) and the dynamics is trivial. The an-
gular velocity is constant so the body rotates about a fixed axis 
with constant speed.2

2. If the vector a is not an eigenvector of the inertia tensor I, 
then the system possesses a straight line of asymptotic equi-
libria. Using the conservation of energy, the reduced equations 
of motion are integrated in terms of hyperbolic functions. In 
this case there is no smooth invariant measure. For a discus-
sion of the motion of the body in this case see [4].

In this note we consider the case where K is non-zero. Note 
that 1

K is a natural time scale for the system, so we introduce the 
non-dimensional variables

τ = Kt, ω1 = 1

K
Ω1, ω2 = 1

K
Ω2.

The system (2) becomes

I11ω
′
1 = −ω2(I13ω1 + I23ω2) + ω2(I22 − I33) + I23,

I22ω
′
2 = ω1(I13ω1 + I23ω2) + ω1(−I11 + I33) − I13, (3)

where ′ = d
dτ .

For the rest of the paper we will analyze the system (3) de-
pending on the position of the vector a relative to the principal 
axes of inertia of the body. We consider two cases, the simplest 
one when the vector a is an eigenvector of the inertia tensor I, and 
the second one, when a belongs to a two-dimensional eigenspace 
of I but is not an eigenvector. The analysis for a generic a will be 
postponed for a subsequent publication.

2 We remark that the influence of a constant gravity field can really complicate 
the dynamics of the body in this case, see e.g. [12] and references therein.

3. Case when a is an eigenvector of III

The simplest case of motion also occurs when a is an eigenvec-
tor of I. In this case I13 = I23 = 0 and the equations of motion (3)
become linear:

I11ω
′
1 = (I22 − I33)ω2,

I22ω
′
2 = (−I11 + I33)ω1.

The trace of the associated constant matrix is zero and its deter-
minant equals

(I22 − I33)(I11 − I33)

I11 I22
.

The above determinant is greater than zero if either I11, I22 > I33
or I11, I22 < I33. So we conclude that if a is an eigenvector of 
the inertia tensor, along the axis corresponding to the largest or 
smallest moment of inertia, then we have simple-harmonic motion 
in the (ω1, ω2) plane.

Similarly, if a points along the axis of middle inertia, then we 
have a linear saddle in the (ω1, ω2) plane. The dynamics in the 
case where the body has rotational symmetry and some of the 
principal moments of inertia coincide can be easily understood.

4. Case when a belongs to a two-dimensional eigenspace of III

In this section we consider the case when the vector a belongs 
to the two-dimensional space spanned by two of the principal axes 
of inertia of the body, but is not aligned with any of them. This is 
equivalent to saying that the vector a is perpendicular to a princi-
pal axis of inertia but without defining one of them.

We suppose that I13 = 0 but I23 �= 0. Under these assumptions, 
the principal moments of inertia of the body are

J1 = I11, J2 = 1

2
(I22 + I33) + 1

2

√
(I22 − I33)2 + 4I2

23,

J3 = 1

2
(I22 + I33) − 1

2

√
(I22 − I33)2 + 4I2

23, (4)

and the vector a belongs to the two-dimensional eigenspace of I

spanned by the principal axes of inertia of the body associated 
to J2 and J3. In other words, a is orthogonal to the principal axis 
of inertia associated to J1.

The equations of motion (3) simplify to:

J1ω
′
1 = −I23ω

2
2 + ω2(I22 − I33) + I23,

I22ω
′
2 = ω1

(
I23ω2 + (I33 − J1)

)
. (5)

The system possesses a particular solution of the form

ω2 = J1 − I33

I23
, ω1 = − ( J1 − J2)( J1 − J3)

I23 J1
t + c0,

where c0 is an arbitrary constant. Hence, the horizontal line ω2 =
J1−I33

I23
is invariant by the flow and so are the semi-planes

ω2 >
J1 − I33

I23
and ω2 <

J1 − I33

I23
.

At this point, we divide our analysis in two separate cases de-
pending on whether J1 coincides with either of J2 or J3, or not.

4.1. Case when J1 �= J2, J3

Then system (5) possesses the integral of motion
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