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Fluctuations in a time series for tropical cyclone tracks are investigated based on an exponentially 
modified Brownian motion. The mean square displacement (MSD) is evaluated and compared to a recent 
work on cyclone tracks based on fractional Brownian motion (fBm). Unlike the work based on fBm, the 
present approach is found to capture the behavior of MSD versus time graphs for cyclones even for large 
values of time.

© 2014 Published by Elsevier B.V.

1. Introduction

Predicting trajectories of tropical cyclones, also referred to as 
typhoons or hurricanes, remains to be a challenging task in spite 
of full scale numerical simulations [1] and application of various 
statistical analyzes [2–4]. Fluctuations of cyclone tracks in a given 
geographical area, however, seem to follow patterns that appear 
to obey a universal law [5,6]. In a recent paper, for example [6], 
the longitude and latitude coordinates of cyclones were plotted 
against time to analyze fluctuations from the mean track of a 
cyclone. Designating the position of a cyclone as x, Ref. [6] essen-
tially investigated fluctuations using a power law corresponding 
to a mean square displacement (MSD), 〈[x(t + t′) − x(t)]2〉 ∼ tα , 
where t is time. This type of MSD is obtained when fluctuations 
are those of fractional Brownian motion and the exponent α takes 
values smaller (subdiffusive) or larger (superdiffusive) than 1 [7]. 
A log–log plot of MSD versus time would yield an α as a slope 
of a straight line graph. The results obtained for nine cyclones in 
Ref. [6], however, showed that there is a spread in the values of α, 
and a plot of the log of MSD versus log time (Figs. 3a and 3b of [6]) 
exhibits a downward curve at longer times rather than a contin-
uous straight line. This downward curve for almost all cyclones 
investigated was attributed to a probable lack of statistics. In this 
paper, we present a non-Markovian stochastic process which could 
account for downward curves appearing at longer times in an MSD 
versus time graph of cyclone track fluctuations.
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In the next section, we begin by parametrizing random fluc-
tuations where a factor f (T − t) h(t) modulates ordinary Brow-
nian motion for time 0 ≤ t ≤ T , with f (T − t) a memory func-
tion [8]. The probability density function is evaluated as well as 
the corresponding mean square displacement. The form, 〈[x(t + t′)
− x(t)]2〉 ∼ tα , is shown as a special case. Motivated by the chal-
lenge to match empirical data with the model, we select from an 
array of possible memory functions [8]. An exponentially modified 
Brownian motion is then taken and shown to yield the observed 
downward curve at longer times found in Ref. [6] for log–log plots 
of MSD versus time.

2. Parametrizing the effects of memory

We model a fluctuating variable x with memory by parametriz-
ing its evolution in time as,

x(T ) = x0 +
T∫

0

f (T − t)h(t)dB(t), (1)

where x0 is an initial value, f (T − t) is a memory function, h(t)
a function of time, and B(t) is the usual Wiener process. As time 
t ranges from 0 to T , the f (τ − t) h(t) modulates the evolution 
of ordinary Brownian motion B(t) thereby affecting the value or 
history of x(T ). In general, the explicit form of f (T − t) and h(t)
can be chosen depending on the process being modeled.

The probability density function for this type of fluctuations 
with strong correlations or memory can be evaluated. Given 
Eq. (1), one could have an ensemble of all possible paths which 
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start at x0 at time t = 0 and ask what the probability would 
be that these paths end at a specific endpoint x(T ) = xT at a 
later time, t = T . Following Feynman’s sum-over-all possible histo-
ries [8–10], we consider all possible paths x(T ) which satisfy the 
δ-function constraint,

δ
(
x(T ) − xT

) = δ

(
x0 +

T∫
0

f (T − t)h(t)ω(t)dt − xT

)
. (2)

Here, we used Eq. (1) and expressed dB(t) = ω(t) dt , where ω(t)
is a random white noise variable [11]. For paths satisfying the 
δ-function constraint, the conditional probability density function 
P (xT , T ; x0, 0) can be obtained by evaluating the expectation value 
E(δ(x(T ) − xT )), i.e.,

P (xT , T ; x0,0) = E
(
δ
(
x(T ) − xT

))

=
∫

δ

(
x0 +

T∫
0

f (T − t)h(t)ω(t)dt − xT

)
dμ,

(3)

where dμ is the Gaussian white noise measure [11]. Writing the 
delta function in terms of its Fourier representation we have,

P (xT , T ; x0,0) = 1

2π

+∞∫
−∞

dk exp
{

ik
[
(x0 − xT )

]}

×
∫

exp

{
ik

T∫
0

f (T − t)h(t)ω(t)dt

}
dμ. (4)

For the integration over dμ, we can use the characteristic func-
tional [11],

∫
exp

{
i

T∫
0

ω(t)ξ(t)dt

}
dμ = exp

{
−1

2

T∫
0

ξ2(t)dt

}
, (5)

which is the Fourier transform of the Gaussian white noise mea-
sure dμ. Using Eq. (5) with, ξ(t) = k f (T − t) h(t), we obtain from 
Eq. (4) the equation,

P (xT , T ; x0,0) = 1

2π

+∞∫
−∞

exp

{
ik

[
(x0 − xT )

]

− k2

2

T∫
0

[
f (T − t)h(t)

]2
dt

}
dk. (6)

The remaining integral is a Gaussian integral which can be evalu-
ated to yield the form [8],

P (xT , T ; x0,0) =
(

2π

T∫
0

[
f (T − t)h(t)

]2
dt

)− 1
2

× exp

(
−

[ T∫
0

[
f (T − t)h(t)

]2
dt

]−1

× (xT − x0)
2

2

)
. (7)

Further simplification of the probability density function, Eq. (7), 
would depend on the explicit choice of the memory function 
f (T − t) and h(t).

3. Mean square displacement with memory

Given Eq. (7), displacements of a fluctuating variable x, on the 
average, can be obtained by looking at the MSD which measures 
the degree of deviation from a mean value 〈x〉 given by [12],

MSD = 〈(
x − 〈x〉)2〉

= 〈
x2〉 − 〈x〉2. (8)

A calculation of the second moment,

〈
x2〉 =

+∞∫
−∞

x2 P (x, T ; x0,0)dx

=
(

2π

T∫
0

[
f (T − t)h(t)

]2
dt

)− 1
2

×
+∞∫

−∞
x2 exp

(
−

[ T∫
0

[
f (T − t)h(t)

]2
dt

]−1
(x − x0)

2

2

)
dx,

(9)

yields,

〈
x2〉 = x2

0 +
T∫

0

[
f (T − t)h(t)

]2
dt. (10)

With this, Eq. (8) becomes (let, 〈x〉 = x0),

MSD =
T∫

0

[
f (T − t)h(t)

]2
dt. (11)

Clearly, when the memory function f (T − t) is simply a constant √
2D and h(t) = 1, Eq. (11) yields the mean square displacement 

MSDB of ordinary Brownian motion, i.e.,

MSDB = 2DT , (12)

where D is the diffusion coefficient. On the other hand choosing a 
memory function of the form,

f (T − t) = (T − t)H−1/2

�(H + 1/2)
, (13)

with h(t) = 1, allows us to write Eq. (1) as,

x(T ) = x0 + B H (T ), (14)

where B H (T ) is a fractional Brownian motion defined in the 
Riemann–Liouville representation by [7],

B H (T ) = 1

�(H + 1
2 )

T∫
0

(T − t)H−1/2dB(t). (15)

In Eq. (15), H is the Hurst exponent with values 0 < H < 1. With 
Eq. (13), the mean square displacement, Eq. (11), becomes,

MSDfBm = AT α, (16)

where T is time, α = 2H , and A = 1/2H �(H + 1/2)2. Eq. (16)
is essentially the form of MSD considered in Ref. [6] which in-
vestigated fluctuations in cyclone tracks. A considerable spread of 
values for α was obtained and a histogram showed a peak-value of 
α = 1.65. In a log–log plot of MSD versus time, however, Eq. (16)
is not able to account for a downward curve appearing at longer 
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