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We present a theory of molecular contributions to magnetoelectric tensors for anisotropic linear media, 
due to induced moments at electric quadrupole–magnetic dipole order. This includes a constraint-
breaking pseudoscalar (axion) X , evaluated relative to crystallographic axes. In general, the crystal point 
groups are classified according to the structures they permit for these tensors, including whether non-
zero X (and hence violation of the Post constraint) is allowed. The calculated macroscopic observable 
X is origin independent (dependent) if the time-odd electric dipole–electric dipole polarizability density 
α′

i j = 0(�= 0); a feature that prompts an analogy with the Buckingham effect.
© 2014 Published by Elsevier B.V.

1. Introduction

In a previous paper [1] we presented a molecular theory of 
the magnetoelectric tensors for Cr2O3 – work that was motivated 
by the discovery [2–4] of a pseudoscalar (axion) contribution in 
antiferromagnetic Cr2O3 (cf. the quantity X in (2) and (3)). The 
analysis in [1] applies to a crystal having the uniaxial point group 
3m of Cr2O3. This paper is a sequel to [1] in which we extend the 
theory at electric quadrupole–magnetic dipole order to cover all 
crystal point-group symmetry classes.

The pseudoscalar X is a macroscopic observable of consider-
able significance in its own right [2–5]; here we are interested 
in a theory of X with a view to clarifying a long-standing debate 
over the role of the so-called Post constraint (5) in the electromag-
netic constitutive tensor for linear anisotropic media. The theory 
(Section 3) also enables us to discuss the question of origin in-
dependence/dependence of the molecular contribution to X (and 
the other magnetoelectric observables V ij and W ij in (2) and (3)), 
and to make an analogy in this regard with the Buckingham effect 
(Section 4).

In Section 5 we consider the theory in relation to the various 
crystal point groups. This leads to a classification of point groups 
according to which of V ij , W ij , and X they permit. The classifica-
tion is valid to any multipole order, and also for other contribu-
tions to the magnetoelectric response.

* Corresponding author.

2. Magnetoelectric relations

We consider linear magnetoelectric relations that are expressed 
in 3-dimensional Cartesian form and connect the macroscopic re-
sponse fields D, H with the electromagnetic fields E, B:

Di = Tij B j, Hi = Uij E j, (1)

where the magnetoelectric tensors Tij and Uij are axial and time 
odd. Also, a repeated subscript implies summation from 1 to 3. In 
the molecular theory of Section 3 we obtain the general forms (our 
notation is that of [1])

Tij = −iV i j + W ij + Xδi j, (2)

Uij = −iV ji − W ji − Xδi j, (3)

where W ij is traceless:

W ii = 0. (4)

V ij is time even; W ij and X are time odd. Each term in (2) and 
(3) is an axial tensor – thus, X is an axial scalar (pseudoscalar). 
(By “general” we mean that (2) and (3) should apply to all crystal 
symmetries, and not just the point group 3m of Cr2O3 that was 
considered in [1]. It turns out that (2) and (3) are general also in 
other ways – see Section 5.)

There has been an extensive debate (see [2–6] for discussion 
and references) concerning the validity of the Post constraint [7]
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Tii = Uii (5)

requiring equality of the traces of the magnetoelectric tensors [8, 
Chap. 4]. According to (2)–(4),

X = 1

6
(Tii − Uii) (6)

is the parameter (also known as the Tellegen constitutive param-
eter [5]) that indicates whether (5) is satisfied. The finding of a 
non-zero value of X in antiferromagnetic Cr2O3 (see [2–4], where 
X is denoted by α̃) demonstrates that (5) is not a universal con-
dition (see also Section 6). We are interested here in a molecular 
theory of the observables in (2) and (3) that applies to all point-
group symmetry classes, and its significance for the status of the 
Post constraint in linear electrodynamics.

3. Molecular theory of the magnetoelectric tensors

We wish to determine the leading contributions to the dynamic 
magnetoelectric tensors due to induced molecular multipole mo-
ments in semi-classical electrodynamics. This means working to 
electric quadrupole–magnetic dipole order [8], and therefore (as 
explained in [1]) we are concerned, in general, with 6 molec-
ular polarizability tensors. These are obtained from quantum-
mechanical perturbation theory for molecules interacting with har-
monic, plane electromagnetic waves E and B [8,9].

Of importance in the theory are the space and time properties 
of the dynamic polarizabilities: namely, whether they are polar or 
axial; time even or time odd; and origin dependent or independent 
(with respect to the choice of molecular coordinate origin relative 
to which they are evaluated). These properties of the molecu-
lar tensors are contained in their quantum-mechanical formulae 
[8, Chap. 3], and they carry over to the corresponding polarizabil-
ity densities, such as those defined for crystals in (9).

Two of the 6 polarizabilities are of electric dipole order: the 
time-even electric dipole–electric dipole polarizability αi j and its 
time-odd counterpart α′

i j (both are polar and origin independent). 
The other four are of electric quadrupole–magnetic dipole order: 
the time-even electric dipole–magnetic dipole polarizability G ′

i j
and its counterpart Gij (both are axial, origin dependent); and 
the time-even electric dipole–electric quadrupole polarizability aijk
and its counterpart a′

i jk (both are polar, origin dependent) [8,9].
The polarizabilities contribute separately to the induced molec-

ular moments, and therefore also to the associated response fields
D and H [1,10,11]. Thus, some results can be transcribed from [1]
where the contributions of αi j , Gij , and a′

i jk are derived relative 
to crystallographic axes (these are the only relevant polarizabilities 
for Cr2O3). In particular [1, Eqs. (26), (27)],

W ij = Gij − 1

3
Gkkδi j − 1

6
ωε jk�a′

k�i, (7)

X = 1

3
Gkk, (8)

where ω is the angular frequency of the fields and ε jk� is the 
Levi-Civita tensor. Here, and in what follows, a bar denotes a po-
larizability density

ti j... ≡
∑
γ

N (γ )t(γ )

i j.... (9)

The sum in (9) is over all molecules (ions/charge distributions) in a 
unit cell, each having polarizability t(γ )

i j... (evaluated relative to crys-

tallographic axes) and number density N (γ ) . An ensemble average 
[12] is implicit in (9).

We mention that a′
i jk also contributes to the permittivity of 

the medium, as do αi j and α′
i j (in the combination αi j − iα′

i j

[8, Eq. (2.110)]). Then, from (24) of [1], we find that the permit-
tivity in Di = Aij E j is

Aij = ε0δi j + αi j − iα′
i j + kk Si jk, (10)

where k is the wave vector of the fields, and

Sijk = 1

3

(
a′

i jk + a′
jki + a′

ki j

)
. (11)

This leaves the contributions of G ′
i j and aijk to the magneto-

electric tensors (2) and (3). We give an outline of the calculation 
because it illustrates further the direct method used in [1]. We 
continue to work relative to crystallographic axes. Our starting 
point is the contribution of these polarizabilities to the macro-
scopic induced bound source densities, namely

ρb = 1

ω
εik�V j�∇i∇ j Ek, (12)

Jbi = i(εi j�Vk� + ε jk�V i�)∇ j Ek, (13)

where

V ij = G ′
i j − 1

2
ωε jmnamni . (14)

(Eq. (12) can be obtained from (31) of [10] by including an en-
semble average [12] and taking account of the unit cell structure. 
Similarly for Jb in (13) – cf. (35) of [10].) The arguments of the 
fields and sources in (12), (13), and what follows are (r, t).

The contributions of the property tensors [13] G ′
i j and aijk to D

and H are obtained by using (12) and (13) in the inhomogeneous 
macroscopic Maxwell equations for E and B [8],

ε0∇i Ei = ρ f + ρb, (15)

μ−1
0 εik�∇k B� = J f i + Jbi + ε0 Ė i, (16)

where ρ f and J f are free source densities. The calculations employ 
two tensor identities, namely

εik�V j�∇i∇ j Ek = −V ij∇i Ḃ j (17)

and

(εi j�Vk� + ε jk�V i�)∇ j Ek = εik�V j�∇k E j − V ij Ḃ j, (18)

that are based on Faraday’s law, εik�∇i Ek = −Ḃ� . According to (12)
and (17) with Ḃ j = −iωB j , (15) can be written ∇ · D = ρ f where

Di = ε0δi j E j − iV i j B j. (19)

And, according to (13) and (18) we can write (16) as ∇ × H =
J f + Ḋ, where D is given again by (19) and

Hi = μ−1
0 δi j B j − iV ji E j. (20)

Thus, (19) and (20) show that the tensor V ij in (2) and (3) is 
expressed, to electric quadrupole–magnetic dipole order, by the 
linear combination (14).

To summarize, the 6 molecular polarizabilities up to electric 
quadrupole–magnetic dipole order provide 6 polarizability densi-
ties that are property tensors [13] for the induced bound source 
densities, and contribute to the macroscopic observables of the 
constitutive tensor as follows: At electric dipole order, αi j − iα′

i j
is the leading multipole term in the permittivity (10). At the next 
order, the two time-even densities (G ′

i j and aijk) provide the lead-
ing contributions to V ij in the magnetoelectric tensors (2) and (3). 
And their time-odd counterparts (Gij and a′

i jk) provide 3 contribu-
tions – to W ij and X in (2) and (3), and a second-order contribu-
tion kk Si jk to the permittivity (10). It is apparent that (2) and (3)
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