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We show that the effective Kratzer and Coulomb potentials can be obtained by taking particular limits 
of a multiparameter exponential potential that was studied recently. Moreover, we demonstrate that the 
bound state solutions of the exponential potential reduce correctly to their well-known counterparts 
associated with the Kratzer and Coulomb potentials. As a byproduct, we obtain a new limit relation for 
the hypergeometric function.
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1. Introduction

It is well known that many exactly-solvable Schrödinger equa-
tions admit bound state solutions in terms of hypergeometric or 
confluent hypergeometric functions [1]. Examples for the poten-
tials of such Schrödinger equations are provided by the Coulomb, 
Kratzer or Morse systems, the bound states of which are expressed 
through confluent hypergeometric functions. On the other hand, 
the Hulthén, Scarf, or Eckart potentials admit bound state solutions 
given by hypergeometric functions. In general, these two groups of 
potentials are not related, however, the Hulthén potential and the 
Coulomb potential have been partially linked through their energy 
spectra [2] and s-states [4], but without discussing [3] the subtle 
connection between their l-wave functions (l �= 0). The purpose of 
this article is to show that a limiting process can be used to ren-
der both the Kratzer and Coulomb potentials as special cases of a 
general, multiparameter exponential potential, the bound-state so-
lutions of which are given in terms of hypergeometric functions. 
More precisely, we consider the singular radial potential of the 
reference [5], which contains several potentials as particular (non-
limiting) forms, one of them being the Hulthén potential. Given the 
properties of this exponential-type potential, approximate bound-
state solutions for the l-waves can be obtained from the corre-
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sponding, exact solutions for the s-waves. Using this result, we will 
prove that the effective Coulomb and Kratzer potentials, together 
with their bound-state solutions, are limit cases of the exponential 
potential and its bound-state solutions, respectively.

The remainder of this work is organized as follows. In Sec-
tion 2, we introduce our multiparameter exponential potential and 
show that application of a certain parameter limit leads to the 
well-known Kratzer and Coulomb potentials, as well as to the 
pseudo-Coulombian potential that was studied in [11]. Section 3
is devoted to the construction of bound-state solutions associated 
with the limiting cases of the multiparameter exponential poten-
tial. To this end, we make use of a new relation between the 
hypergeometric function and its confluent counterpart, which we 
prove in Appendix A.

2. Effective Kratzer and Coulomb potentials from an 
exponential-type potential

We start out by introducing a radial exponential potential V , 
given by the expression Ref. [5]

V (r; ..k) = A
e−r/k

1 − e−r/k
+ B

e−r/k

(1 − e−r/k)2
+ C

e−2r/k

(1 − e−r/k)2
, (1)

where r ≥ 0 and A, B , C , k are real-valued parameters. The princi-
pal idea for extracting the Kratzer and Coulomb potentials from (1)
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is to perform a limit with respect to the parameter k. Let us write 
(1) as a Taylor series in the variable r/k around zero

V (r; ..k) = (B + C)

(
k

r

)2

+ (A − C)
k

r
+ 1

12
(−6A − B + 5C)

+ O

(
r

k

)
. (2)

In our approach, it is easy to see that the exponential-type poten-
tial (1) becomes another type of potential in the limit k → ∞, for 
all r. This happens when the coefficients of Eq. (1) are chosen as

A = αk−1, B = βk−2 and C = γ k−2, (3)

where α, β and γ are real-valued constants. By virtue of (2) we 
have

lim
k→∞

V (r; ..k) = β + γ

r2
+ α

r
= V (r). (4)

This expression has the form of the Kratzer and Coulomb poten-
tials. Observe that (2) is defined on the whole positive real line, 
despite arising as an approximation of (1) close to zero. This is so, 
because the new parameters A, B and C depend on k. Then, the 
Kratzer potential and the Coulomb potential are limit cases of the 
potential (1), in all the real semi-interval.

Next, we will see that the centrifugal potential term can be in-
terpreted as a parameter limit of an exponential expression. To this 
end, we verify that the term defined as

V c(r) = l(l + 1)

r2
; l = 0,1,2, .., lc, (5)

is limit case of a convenient superposition of terms of the poten-
tial (1), where lc is the highest angular momentum for which a 
bound state exists [6]. In fact, accordingly with [7,8] and [9,10], 
the following potential

Va(r; ..k) = l(l + 1)

k2

[
D1

e−r/k

(1 − e−r/k)2
+ D2

e−2r/k

(1 − e−r/k)2

]
, (6)

where

D1 + D2 = 1, (7)

satisfies

lim
k→∞

Va(r; ..k) = V c(r). (8)

Therefore, the effective potential

V eff(r) = V (r) + V c(r) = β + γ

r2
+ α

r
+ l(l + 1)

r2
, (9)

is obtained from the limit

lim
k→∞

Vl(r; ..k) = V eff(r), (10)

where

Vl(r; ..k) = V (r; ..k) + Va(r; ..k). (11)

This last potential is characterized by its minimum value

Vl
(
r(l)

0 ; ..k) = −1

4

[A + B + D1k−2l(l + 1)]2

B + C + k−2l(l + 1)
, (12)

at

r(l)
0 (..k) = k ln

[
1 − 2

B + C + k−2l(l + 1)

A + B + D1k−2l(l + 1)

]
. (13)

Hence, when the assignments (3) are considered, we find that the 
limit of the potential minimum (12) at (13), matches with the po-
tential minimum of the effective potential (9)

lim
k→∞

Vl
(
r(l)

0 ; ..k) = −1

4

α2

β + γ + l(l + 1)
, (14)

at

lim
k→∞

r(l)
0 (..k) = − 2

α

(
β + γ + l(l + 1)

)
, (15)

when the parameter k tends to infinity.
From Ref. [5], we deduce that the following eigenvalue problem

d2

dr2
ψnl(r; ..k) + [

Enl(..k) − Vl(r; ..k)
]
ψnl(r; ..k) = 0, (16)

ψnl(0; ..k) = ψnl(∞; ..k) = 0; n = 0,1,2, .. (17)

with potential given in Eq. (11), has the eigenvalues

Enl(..k)

= − 1

k2

(
(1 + n)2 + (1 + 2n)δl + k2(A + B) + D1l(l + 1)

2(n + δl + 1)

)2

,

(18)

with

δl = 1

2

[−1 +
√

1 + 4k2(B + C) + 4l(l + 1)
]
. (19)

The corresponding unnormalized eigenfunctions are given by

ψnl(r; ..k) = f0(r; ..k) f1(r; ..k) 2 F1
(−n,bnl; cnl; e−r/k), (20)

where

f0(r; ..k) = (
e−r/k) cnl−1

2 , f1(r; ..k) = (
1 − e−r/k)δl+1

, (21)

with

bnl = (n + 2δl + 1)(δl + 1) − k2(A + B) − D1l(l + 1)

n + δl + 1
, (22)

and

cnl = −n2 + (2δl + 1)n + k2(A + B) + D1l(l + 1)

n + δl + 1
> 1. (23)

It is important to remark that when l = 0, Eq. (16) represents the 
radial Schrödinger equation for the potential V 0 (r; ..k) given by 
Eq. (1). For the case l �= 0, from Eqs. (11) and (8), Eq. (16) can be 
seen as an approximation to a radial Schrödinger equation with 
potential (1) plus centrifugal term approximated by the poten-
tial Va (r; ..k) of Eq. (6). So, as it is indicated in Eq. (10), Eqs. (18)
and (20) are a good approximation to the eigensolution of the 
Schrödinger equation with potential (1) and centrifugal term (5), 
when the parameter k is large.

Since the function Vl (r; ..k) is contained in the eigenvalue 
problem (16)–(17) and satisfies the limit (10), we want to esti-
mate the corresponding limits of the eigenvalues (18) and of the 
eigenfunctions (20) of the problem. Before continuing we note that 
by Eq. (3) δl in Eq. (19) is independent of k, then the parame-
ters bnl , cnl and the energy spectrum Enl(..k) can be written in 
short form as

bnl = uk + υ, cnl = uk + w,

Enl(..k) = − 1

4k2
(uk + w − 1)2, (24)
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