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The non-bijective version of Wigner’s theorem states that a map which is defined on the set of self-
adjoint, rank-one projections (or pure states) of a complex Hilbert space and which preserves the 
transition probability between any two elements, is induced by a linear or antilinear isometry. We present 
a completely new, elementary and very short proof of this famous theorem which is very important in 
quantum mechanics. We do not assume bijectivity of the mapping or separability of the underlying space 
like in many other proofs.

© 2014 Published by Elsevier B.V.

1. Introduction

E.P. Wigner was the first who introduced the definition of 
the so called symmetries in quantum mechanics. A symmetry is 
a transformation of a quantum structure that preserves a certain 
quantity or relation. Specifically, a symmetry on the set of rank-
one projections that preserves the transition probability between 
any two elements is usually called a Wigner symmetry. It was stated 
in [1] in 1931 that every bijective Wigner symmetry is induced by 
a unitary or an antiunitary operator. This result is known as Wign-
er’s theorem. The more general, non-bijective version is also well-
known and it states that every (not necessarily bijective) Wigner 
symmetry is induced by a linear or an antilinear isometry.

It is worth mentioning that U. Uhlhorn proved a certain gener-
alization of the bijective Wigner theorem in [2]. Namely he only 
assumed that the bijective transformation preserves orthogonal-
ity in both directions. However, in that proof the bijectivity as-
sumption and the condition that the underlying space is at least 
three-dimensional are crucial. We note that the general version of 
Wigner’s theorem cannot be extended in such a way, in fact, there 
are very simple examples which show that usually a transforma-
tion that preserves orthogonality in both directions is not induced 
by a linear or an antilinear isometry.
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If we consider a unitary or an antiunitary operator on the un-
derlying Hilbert space, then it obviously defines a Wigner symme-
try. The hard part is to prove the reverse direction. A very simple 
example for a unitary transformation is a rotation of the coordinate 
system. The well-known time reversal operator cannot be linear, but 
it can be realized as an antiunitary operator (see [1]). On a sepa-
rable Hilbert space the shift operator

S(x1, x2, . . .) = (0, x1, x2, . . .)

provides a linear isometry which is not unitary (since it is not bi-
jective) and it corresponds to a (non-bijective) Wigner symmetry.

In quantum mechanics, a complex Hilbert space is associated 
to every quantum system where usually separability is assumed. 
However, there are certain situation in quantum field theory where 
it is necessary to consider non-separable Hilbert spaces as well. 
A very simple example is the following: if we consider an infinite 
tensor product of at least two-dimensional Hilbert spaces, then it 
will be non-separable (see e.g. [3, pp. 86–87]). Therefore it is rel-
evant to consider Wigner symmetries on non-separable spaces as 
well.

Concerning the history of the theorem, Wigner himself did not 
give a rigorous mathematical proof. The first such proof (for the bi-
jective case) was given by J.S. Lomont and P. Mendelson, thirty-two 
years later in [4]. One year after that V. Bargmann gave another 
proof in [5]. Several other proofs were given so far for the bijective 
and non-bijective versions, see for instance [6–12].

In Physics Letters A recently three elementary and short proofs 
were given: two in [13] and one in [14]. However, in the first pa-
per bijectivity of the mapping and separability of the underlying 
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Hilbert space are assumed, and in the second letter two times dif-
ferentiability is assumed. The aim of the present work is to give 
a very short and elementary proof for the non-bijective version of 
Wigner’s theorem, first for separable Hilbert spaces and then, as a 
consequence, for the non-separable case.

Throughout this paper H will denote a complex Hilbert space 
and P1 = P1(H) will denote the set of rank-one and self-adjoint 
projections on H, i.e.

P1 = {
P[�v]: �v ∈ H,‖�v‖ = 1

}
where P[�v] refers to the projection with precise range C · �v . The 
notations |�v〉〈�v| or �v ⊗ �v are also favourable versions for P[�v]. We 
note that the so-called unit rays (or pure states) of H and the one-
dimensional subspaces of H can be identified with P1 in a very 
natural way.

The transition probability between two elements P[�v] and P[ �w]
is the quantity Tr P[�v]P[ �w] = |〈�v, �w〉|2. Since projections are op-
erators on H, the usual operator–norm naturally defines a metric 
on P1 i.e.: d(P[�v], P[ �w]) = ‖P[�v] − P[ �w]‖. This is the so-called gap 
metric (see also [15]). The equation

∥∥P[�v] − P[ �w]∥∥ =
√

1 − ∣∣〈�v, �w〉∣∣2 =
√

1 − Tr P[�v]P[ �w]
is very well-known. Below, we state the non-bijective Wigner the-
orem which will be proven here.

Wigner’s theorem. Let H be a complex Hilbert space and let us con-
sider an arbitrary mapping f : P1 → P1 which preserves the transition 
probability, i.e.:

Tr P[�v]P[ �w] = Tr f
(
P[�v]) f

(
P[ �w]) (‖�v‖ = ‖ �w‖ = 1

)
. (1)

Then there exists a linear or antilinear isometry W: H → H such that 
the equation

f
(
P[�v]) = WP[�v]W∗ = P[W�v]

is satisfied for every unit vector �v ∈H.

An easy assertion shows that (1) holds if and only if f is an 
isometry with respect to the gap metric. Now, let us consider 
an arbitrary metric space (X, d) and two subsets D, R ⊆ X . We 
say that R resolves D if for every two points x1, x2 ∈ D whenever 
d(x1, y) = d(x2, y) is satisfied for all y ∈ R , we necessarily have 
x1 = x2 (see also [16]). For instance on the plane (R2) three ar-
bitrary points not lying on a single line resolves the whole plane. 
Another example is when D is a half-plane and R consists of two 
different points of the boundary of D .

In Section 2 we present our proof for separable Hilbert spaces. 
Our strategy is the following: first, we find a set which resolves 
a dense subset D ⊆ P1. Second, we show that using a linear or 
antilinear isometry V we can assume that our mapping acts as 
the identity mapping on D . Finally, we conclude that this mapping 
necessarily has to be the identity on the whole of P1.

In Section 3 we prove the non-separable case, and we close our 
letter with some concluding remarks in Section 4.

2. Proof of the separable case

We will denote the dimension of our separable Hilbert space H
by N ∈ N ∪ {∞}. Since Wigner’s theorem is trivially true for one-
dimensional spaces, we always assume that N > 1. The symbol NN
will stand for the set {1, 2, . . . N} if N < ∞, and for the set of 
natural numbers if N = ∞. We fix an orthonormal base: {�e j}N

j=1. 
Throughout the paper v j := 〈�v, �e j〉 will denote the jth coordinate 
of a given unit vector �v .

It is quite easy to see that the set

D := {
P[�v]: v j = 0, ∀ j ∈NN

} ⊆ P1

is dense in P1 (with respect to the gap metric). Hence, if we could 
somehow show that f (P[�v]) = P[�v] is valid for every P[�v] ∈ D , it 
would be true on the whole of P1, since isometries are continuous. 
In the lemma below we give a set R ⊆ P1 which resolves the set 
D defined above.

Lemma. Let H be an arbitrary separable (finite or infinite-dimensional) 
Hilbert space. The set

R = {
P[�e j]

}N
j=1

∪
{

P
[

1√
2
(�e j − �e j+1)

]
,P

[
1√
2
(�e j + i�e j+1)

]}
1≤ j<N

resolves D.

Proof. We choose two arbitrary projections P[�v], P[ �w] ∈ D such 
that ‖P[�v] − P[�h]‖ = ‖P[ �w] − P[�h]‖ is satisfied for every P[�h] ∈ R . 
Thus, we have

|v j| = |w j| (∀ j) (2)

|v j − v j+1| = |w j − w j+1| (1 ≤ j < N) (3)

|v j − iv j+1| = |w j − iw j+1| (1 ≤ j < N). (4)

Multiplying �v by a complex number of modulus one, we may as-
sume that v1 = w1 (= 0) holds. Suppose that vk = wk (= 0) was 
proven for a number 1 ≤ k < N . Then (2), (3) and (4) for j = k give
us vk+1 = wk+1 (= 0). This verifies that P[�v] = P[ �w] is fulfilled, 
and therefore R resolves D . �

We note that R does not resolve P1. An easy counterexample is 
obtained if we put �v = 1/

√
2 · (�e1 + �e3) and �w = 1/

√
2 · (�e1 + i�e3). 

We also note that if somehow we could show that f is the identity 
mapping on R , then necessarily f (D) ⊆ D holds, and by the above 
lemma f has to be the identity mapping on D , and hence on P1. 
Now, we are in a position to present our proof.

Proof of Wigner’s theorem in the separable case. For every j ∈NN

let P[�g j] = f (P[�e j]), then {�g j}N
j=1 has to be an orthonormal sys-

tem, but it is not necessarily a base. We will denote the subspace 
which is generated by this system by H′ . Let �v be an arbitrary 
unit vector in H and let f (P[�v]) = P[ �w]. From (1) we get |v j | =
|〈 �w, g j〉| ( j ∈ NN ), and since ‖ �w‖2 = 1 = ‖�v‖2 = ∑N

j=1 |v j |2 =∑N
j=1 |〈 �w, g j〉|2, Parseval’s identity (see [17, Theorem I.4.13]) im-

plies �w ∈ H′ . We define a linear isometry V: H → H by V�e j = �g j
( j ∈ NN). Obviously the mappings f (·) and V∗ f (·)V satisfy (1)
simultaneously because V∗ maps H′ isometrically onto H and 
hence the equality |〈�x, �y〉| = |〈V∗�x, V∗ �y〉| (�x, �y ∈H′, ‖�x‖ = ‖�y‖ = 1)

is true. Moreover, the new mapping leaves the elements P[�e j]
( j ∈ NN ) invariant. Thus from now on, without loss of generality 
we may assume that every P[�e j] ( j ∈NN ) is a fixpoint.

Let f (P[�v]) = P[ �w], then by the latter assumption we clearly 
have

|w j| =
√

Tr P[ �w]P[�e j] =
√

Tr f
(
P[�v]) f

(
P[�e j]

)

=
√

Tr P[�v]P[�e j] = |v j| (∀ j).

An easy observation from (1) gives us that

f
(
P
[
1/

√
2 · (�e j − �e j+1)

]) = P
[
1/

√
2 · (�e j − δ j+1�e j+1)

]
and

f
(
P
[
1/

√
2 · (�e j + i�e j+1)

]) = P
[
1/

√
2 · (�e j − ε j+1�e j+1)

]
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