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Transferring quantum states between nearby quantum processors is important for building up a powerful 
quantum computer. In this paper, we propose a controllable scheme to transfer bipartite entangled states 
using two open-ended spin- 1

2 chains in parallel as a dual-rail quantum channel. We perform two sets
of operations, one on one end of the chains at the beginning of the system evolution and the other on 
the other end of the chains at the time the transferred entanglement needs to be picked up. Among the 
operations employed in the scheme there are weak measurements with controllable strengths. By suitably 
choosing the strengths of these weak measurements, the entanglement transferability is pronouncedly 
improved, compared to that due to the spin chains’ natural dynamics. In principle, the entanglement 
amount at the receiving site can be made arbitrarily close to that at the sending site, i.e., perfect 
entanglement transfer could be achieved asymptotically.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The transfer of quantum states is undoubtedly very impor-
tant in future’s quantum information processing technology [1]. 
For long-distance quantum communication, photons are the most 
suited candidates to play the role of quantum information carri-
ers flying from one to another in a faraway spatial location. For 
example, in quantum key distribution, the photons encoding a se-
cret key via their polarization freedoms can easily travel along 
long optical fibers or through free space and can then be readily 
measured at an arriving location. However, in distributed quantum 
computation [2–4], not only transferring quantum states between 
quantum computers is important but also interfacing a quantum 
computer (say, arrays of spins or trapped ions) with optics is nec-
essary. An idea to avoid such interfacing problems is to use the 
same physical systems for both the quantum computers and the 
quantum channels. For short distances, it is more suitable to adopt 
the collective phenomena, such as the natural dynamical evolution, 
of a permanently coupled chain of quantum systems to connect 
different nearby quantum processors or registers to build up a 
powerful quantum computer. In fact, by using a 1D spin chain 
as the data bus, Bose proposed a quantum state transfer pro-
tocol in which an unknown state can be efficiently transferred 
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from one to another spin with certain fidelity via the spin chain’s 
natural evolution [5]. Nevertheless, for a spin chain governed by 
a uniformly coupled Heisenberg Hamiltonian [5], perfect quan-
tum state transfer is only possible for systems with two or three 
spins [6]. Subsequently, a number of approaches, such as engi-
neered couplings [7–13], Gaussian wave-packet encoding [14–16], 
employment of specific pulses [17], weak coupling of the send-
ing and receiving qubits to a quantum many-body system [12,18,
19] and so on, have been proposed to achieve perfect or near 
perfect quantum state transfer. In addition to these strategies, Bur-
garth and Bose also suggested a dual-rail channel by adding an 
auxiliary spin chain to improve transfer capability of single-spin
states [20–22]. With enough measurements carried out, their pro-
tocol will achieve conclusively perfect quantum state transfer with 
a success probability close to 1. The adding of an additional spin 
chain is actually not problematic and is even much easier in many 
experiments [23–25] that realize a whole bunch of parallel uncou-
pled chains rather than just a single one.

As is well known, entanglement is a key resource to realize 
various intriguing tasks in quantum information processing and 
quantum computing [1]. The capability of on-demand transfer of 
entanglement through spin chains is, of course, significant [26,27]. 
In particular, it is practically interesting to obtain entanglement 
between two independent spins at a receiving site through the 
process of transferring the entanglement as a whole prepared be-
tween two spins at a sending site. To achieve this task, the dual-
rail channel based on using two parallel spin chains (cf. Fig. 1) is 
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Fig. 1. The schematic setup for entanglement transfer through two parallel spin- 1
2

chains each contains N spins. An entangled state to be transferred is encoded in 
spins A1 and B1 on each of which the sender performs a weak measurement be-
fore the system starts to evolve. Later, at a desired moment of time, the receiver 
performs a suitable set of operations on spins AN and B N to get them in the in-
tended entangled state.

a naturally occurring setting. However, with respect to the issue of 
entanglement transfer, the answer to the question “Can the entan-
glement of an arbitrarily prepared bipartite entangled state be per-
fectly transferred through a pair of parallel spin chains?” is still not 
known completely. Our study in this work shows that in fact not 
all the bipartite entangled states can be transferred via two paral-
lel spin chains. More concretely, we find out that there are states 
of two spins that are initially entangled at a sending site but later 
become always unentangled at a receiving site (i.e., the two spins 
at the receiving site remain separable during the entire time evolu-
tion). Also, there are states whose entanglement can be transferred 
to a destination, but during the system’s natural evolution their 
entanglement appears with some delay [28], then suddenly van-
ishes, and after some time reappears again, etc. Here we propose a 
controllable scheme that allows us to improve the entanglement 
transfer in terms of the dual-rail protocol, especially to renew 
the transferability of those states whose entanglement cannot be 
transferred by natural evolution. Namely, we find that for bipartite 
entangled states of the form α|00〉 + β|11〉 (|0〉 ≡ |↓〉: spin-down 
state, |1〉 ≡ |↑〉: spin-up state and |α|2 +|β|2 = 1), a large weight of 
the |11〉 component hinders its entanglement transfer. Therefore, 
in our scheme, we first lower the weight of the |11〉 component 
by means of weak measurements [29–39] with strength p on each 
of the two spins at the sending site. The weak measurement differs 
from the projective measurement in that the former does not com-
pletely collapse the system’s measured state. Actually, such kind of 
measurements has been experimentally realized in several physi-
cal contexts [40–45]. Next, we let the system evolve as it should. 
And, finally, at a desired receiving site, we perform on each spin 
another weak measurement with strength q. By suitably choosing 
q we shall be able to transfer entanglement of any bipartite entan-
gled states. In principle, the entanglement degree at the receiving 
site can be made in our scheme exactly equal to that at the send-
ing site, i.e., perfect entanglement transfer could be achieved.

We structure our paper as follows. After this Introduction, 
in Section 2 we deal with a solvable model consisting of two par-
allel open-ended spin- 1

2 chains each of which is characterized by 
nearest neighbor interactions and under a common uniform mag-
netic field. By means of dual-rail encoding, the process of entan-
glement transfer along the chains is investigated. It is shown that, 
due to natural evolution, not any entangled states can transfer 
their entanglement and the entanglement transfer, if it happens, 
cannot be perfect. Then, in Section 3, we propose a controllable 
scheme to circumvent such limitations imposed by the system’s 
natural dynamics. By performing appropriate prior and posterior 
unsharp measurements, the entanglement transferability is con-
siderably enhanced and, in principle, can be made asymptotically 
perfect. Finally, we conclude in Section 4.

2. Dual-rail transfer of entanglement

Consider, for generality, two 1D spin- 1
2 graphs A and B , each 

of which contains N spins. The spins in graph A (B) are labeled 
A1, A2, ... and AN (B1, B2, ... and B N ). There are no interactions 
between the graphs so the total Hamiltonian of the system can be 
written as [20]

H = H (A) ⊗ I(B) + I(A) ⊗ H (B), (1)

where H (S) (S = A, B) is the Hamiltonian of spin graph S and I(S)

the identity operator. The authors of Refs. [46–48] studied spin 
rings, so for precise analytical formulation they had to introduce 
the cyclic boundary conditions which are a good approximation 
only for rings with a large radius. Here we are interested in lin-
ear open-ended spin chains (see Fig. 1), which represent the most 
natural geometry for an information transfer channel. Assuming 
the nearest neighbor Heisenberg interactions of equal strength and 
the common uniform magnetic field h, the Hamiltonians H (A) and 
H (B) in Eq. (1) are identical in form, i.e., for both S = A and B ,

H (S) = − J

2
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where σ j
x(y,z) are the x(y, z) Pauli matrices for the jth spin and 

J > 0 the coupling strength between nearest neighbors.
Let the two-spin entangled state to be transferred has the form∣∣ψ(0)

〉
A1 B1

= cos θ |0〉A1 |0〉B1 + eiφ sin θ |1〉A1 |1〉B1 , (3)

with 0 < θ < π/2 and 0 < φ < π . Unlike the transfer of single-
spin states, the transfer of two-spin entangled states would be 
more subtle since the entanglement dynamics due to decoher-
ence is very rich and sensitive to the form of the entangled state 
to be transferred (see, e.g., [28]). Hence, we should consider the 
whole range of possible values of φ and θ to explore the depen-
dence of entanglement transferability on those parameters. The 
form (3) of the input state means that a dual-rail encoding is 
adopted: information is encoded in states of the first spin pair 
A1 B1 of the two chains. As for the other spins, they are all pre-
pared in the unexcited (i.e., spin-down) state |0〉 ≡ |↓〉. As H (S)

commutes with 
∑N

j=1 σ
j

z , there exists at most one excitation (i.e., 
one spin-up state) in each chain. For convenience, we denote by 
|0〉(S) = |0...0...0〉S1...S j ...SN the state with all the spins being un-

excited and by |j〉(S) = |0...1...0〉S1...S j ...SN (j = 1, 2, ..., s, ..., r, ..., N)

the state with only spin j being excited. The eigenstates |m̃〉(S)

and eigenenergies Em = E(A)
m = E(B)

m of the Hamiltonian (2) rel-
evant to our problem can be derived as [5] |m̃〉(S) = {[√2 +
δm,1(1 −√

2)]/√N} ∑N
j=1 cos[π(m − 1)(2 j − 1)/2N]|j〉(S) and Em =

2h + 2 J {1 − cos[π(m − 1)/N]}, with m = 1, 2, ..., N . Since the two 
parallel spin chains do not have any direct interactions, the excita-
tion transfer in each chain can be dealt with independently. In this 
case, the transition amplitude of an excitation from a sth to an rth 
site in each chain takes the same form as

c(S)
sr (t) = (S)〈r|e−iH(S)t |s〉(S)

=
N∑

m=1

(S)〈r|m̃〉(S)(S)〈m̃|s〉(S)e−iEmt . (4)

As the values of c(A)
sr (t) and c(B)

sr (t) of the two identical chains are 
the same for all possible s and r, we ignore their superscripts (A)

and (B) throughout the paper. For concreteness, we set s = 1 and 
r = N in the following (i.e., the sender and the receiver are located 
near the opposite ends of the chains).
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