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Shallow one-dimensional double-well potentials appear in atomic and molecular physics and other fields. 
Unlike the “deep” wells of macroscopic quantum coherent systems, shallow double wells need not 
present low-lying two-level systems. We argue that this feature, the absence of a low-lying two-level 
system in certain shallow double wells, may allow the finding of new test grounds for quantum mechan-
ics in mesoscopic systems. We illustrate the above ideas with a family of shallow double wells obtained 
from reflectionless potentials through the Darboux–Bäcklund transform.

© 2014 Published by Elsevier B.V.

1. Introduction

In the present Letter we study the properties of an exactly sol-
uble model consisting of a structureless particle on the line subject 
to a symmetric shallow double-well potential, where by “shallow” 
we mean that the ground level is above the energy of the classi-
cal separatrix (V (x = 0)). The main purpose of the present Letter 
is to elucidate in which aspects the behavior of such shallow dou-
ble wells differs from that of the “deep” double wells that appear, 
for instance, in the description of Josephson junction based circuits 
exhibiting macroscopic quantum coherence (MQC) [1–3]. Recently, 
a symmetric shallow double-well potential has been used in the 
description of unstable phonon modes of the layered superconduc-
tor LaO0.5F0.5BiS2. The model strongly suggests that a dynamical 
deformation of the structure of the material lies at the heart of its 
superconductor transition [4]. Previously a similar model, leading 
to similar conclusions, was proposed for the superconducting com-
posite MgCNi3 [5,6]. The properties of both partially fragmented 
Bose–Einstein Condensates [7] and high-spin fermionic systems [8]
in shallow double-well optical traps are another example of cur-
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rent interest. Symmetric shallow double wells may also play a role 
in the superionic transition of the AgI compound [9,10], as we shall 
argue on the following pages.

In order to generate exactly soluble potentials we resorted to 
the Darboux–Bäcklund Transform [11] (DBT) and the factorization 
method [12–15]. In a nutshell, a DBT connects two Hamiltonians, 
self-adjoint second order linear differential operators, say an initial 
Hamiltonian, H I with spectrum σI , and transformed Hamiltonian, 
HT with spectrum σT , which can be factorized in terms of a first 
order differential operator A in the form:

H I = A† A + ε, HT = A A† + ε, (1)

where † stands for the adjoint and ε is a real valued constant, 
the so-called factorization energy. Andrianov and collaborators [15]
have shown, in the first term, that neither the ground energy, 
E(I)

0 of H I , nor that of HT , E(T )
0 , is smaller than ε , and that there 

are exactly three different types of DBT, namely: 1) those for which 
ε = E(I)

0 = E(T )
0 , 2) those for which ε = E(I)

0 < E(T )
0 , and 3) those 

for which ε = E(T )
0 < E(I)

0 . In the second term, is was shown in the 
cited article that type (1) transforms are isospectral, i.e. that in that 
case σI = σT , that type (2) transforms are quasi-isospectral with 
σT = σI − {ε} and type (3) transforms are also quasi-isospectral, 
but with σT = σ ∪ {ε}. This last type of DBT is the only one we 
shall employ in the present Letter.

As there is an underlying super-symmetric algebra [16] involv-
ing H I , HT and A, this DBT we have described is preferently 
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referred to in the literature as the 1-SUSY (first order super-sym-
metric) transform. The field of super-symmetric quantum me-
chanics [15–20], involving not only 1-SUSY but also higher order 
(n-SUSY) transforms [21–23] (essentially: n times iterated DBT’s) 
has a vast literature of its own, which goes well beyond the scope 
of the present Letter.

The authors have not been able to find any precedent in the 
literature where 1-SUSY or n-SUSY have been used specifically for 
the generation of shallow double wells although there is at least 
one study of asymmetric double wells, which is explicitly focused 
on deep wells [24].

It should also be mentioned that double-well models can 
be constructed without the use of the DBT or the factorization 
method. In particular, we find interesting that a semi-analytical 
study of tunneling in double wells can be achieved without having 
to resort to the effective two-level system model [25].

We have chosen to construct double-well potentials (DWP from 
now on) starting from reflectionless potentials through a first or-
der quasi-isospectral DBT that generates a single extra level in 
the spectrum of the transformed potential. In this way it is war-
ranted that the bounded spectra of our DWP’s have exactly two 
levels each, making the analysis of our results particularly sim-
ple. As a collateral result the DWP’s studied in this Letter are first 
order super-symmetric (1-SUSY) partners of reflectionless poten-
tials, and thus second order super-symmetric (2-SUSY) partners 
of the free particle. Then, the examples of DWP’s that are about 
to be discussed belong to the wide family of n-SUSY partners of 
reflectionless potentials. An extension of this latter family of poten-
tials (with an exotic underlying superalgebra, exhibiting multiple 
fermionic and multiple bosonic generators) has recently been stud-
ied in relation with n-soliton systems [26] and kinks [27,28]. The 
examples studied in this pages (as well as the totality of n-SUSY 
partners of reflectionless potentials) are particular cases of this ex-
tended family.

The rest of this Letter is structured as follows: In Section 2
we describe the procedure we have used for constructing soluble 
shallow double wells, and describe some of the features of the re-
sulting potentials. The significance of our results is discussed in 
Section 2 and finally, some tentative conclusions are advanced in 
Section 3.

2. Procedure and results

Let us start by considering the dimensionless Hamiltonian

η = − d2

dx2
− 2 sech2 x. (2)

This −2 sech2 x potential is an example of a reflectionless potential, 
well known for having one sole bounded level E0 and a continuous 
spectrum that starts at E = 0 (see, for example, [29]). Operator η
can be factorized in the form

η = A†
ε Aε + ε, (3)

with the use of the linear first order operators

Aε = − d

dx
+

(
u′

ε

uε

)
(x) (4)

and

A†
ε = d

dx
+

(
u′

ε

uε

)
(x), (5)

taking ε < 0 below the ground level, E ′
0 = −1, of Hamiltonian (2). 

In (4) and (5), the prime stands for the x derivative, and the so-
called seed function uε : R →R, given by

uε(x) = sinh
(√|ε| x

)
tanh(x) − √|ε| cosh

(√|ε| x
)
, (6)

is a non-normalizable (thus unphysical) yet node-free solution of 
the eigenvalue equation

ηuε(x) = εuε(x). (7)

The new Hamiltonian

Ξε = Aε A†
ε + ε, (8)

which is of the usual Schrödinger form:

Ξε = − d2

dx2
+ Vε(x) (9)

with a potential Vε : R →R that can be readily expressed in terms 
of uε as

Vε = 2

(
u′

ε

uε

)2

− u′′
ε

uε
+ ε, (10)

has two bounded states, namely, the ground state

ψ
(ε)
0 (x) = 1

uε(x)
×

( ∞∫
−∞

dx

u2
ε(x)

)−1/2

(11)

with corresponding energy eigenvalue E0 = ε , i.e.

Ξεψ
(ε)
0 (x) = εψ

(ε)
0 (x), (12)

and an excited state ψ(ε)
1 (x) with corresponding energy eigenvalue 

E1 = E ′
0 = −1, i.e.

Ξεψ
(ε)
1 (x) = −ψ

(ε)
1 (x). (13)

An explicit, yet not particularly illuminating, expression for ψ(ε)
1 (x)

can be found from the relation

ψ
(ε)
1 (x) ∝ Aεφ0(x), (14)

where

φ0(x) =
√

1

2
sech(kx), (15)

is the normalized eigensolution of operator η for its ground level 
E ′

0 = −1, i.e.

ηφ0(x) = −φ0(x). (16)

The correctness of Eq. (12) can be grasped immediately by observ-
ing, from definition (6) that operator A†

ε annihilates 1/uε , i.e.

A†
ε

(
1

uε(x)

)
= 0, (17)

and then plugging 1/uε(x) at the right of (8). In a similar way, 
Eq. (16) is proven by inserting (15) in (2). From (15) and (16),
Eq. (13) can be proven with the use of intertwining relation

Ξε Aε = Aεη, (18)

which in turn is proven by inserting (3) and (8) in (18).
Plugging (5) in (10) gives us, after some algebra,

Vε(x) = 2(1 + ε)(−ε + sech2 x sinh2 √|ε| x)

(tanh x sinh
√|ε| x − √|ε| cosh

√|ε| x)2
(19)

as an explicit expression for the Vε potentials.
From (19) it is found that relations

Vε(x = 0) = 2ε + 2 (20)

and

d2 Vε

dx2
(x = 0) = 4

(
3 + 4ε + ε2) (21)
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