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Using the eigenmodes of the 1-D Lienard–Wiechert Green’s function, I compute the superradiant emission 
from an initially partially inverted slab of two-level atoms. I find that in regime I, (T = 0) > nmax, 
there is no superradiant emission (where n(T = 0) = nground(T = 0) − nexcit(T = 0)); in regime II, 
nmax > n(T = 0) > ncrit , there is weak intensity superradiance; while in regime III, ncrit > n(T = 0) ≥ −1, 
superradiant emission share the same features as that of an initially completely inverted system. I show, 
further, that in regime II, the superradiant emission intensity increases exponentially as a function 
of −n(T = 0), while in regime III, it increases nearly linearly as a function of −n(T = 0).

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Research on superradiance has been extensive since the semi-
nal work of Dicke [1]. The review papers/books [2–4] summarize 
the advances made in this field over the last few decades. More 
recently [5], I summarized the analytical results for the expres-
sions of the cooperative decay rate (CDR) and the associated co-
operative Lamb shift (CLS) for the cases of both weak excitation 
and of complete inversion for different simple geometries at ini-
tial time. However, in order to follow the time-development of 
superradiance beyond the linear regime, it is necessary to solve 
the Maxwell–Bloch set of equations.

In [6], it proved useful for a deeper physical understanding 
of the superradiance process to formulate the dynamics of the 
emission from the two-level system if the polarization, the pop-
ulation difference and the electric field were expanded in a basis 
formed by the eigenfunctions of the 1-D Lienard–Wiechert (L–W) 
Green’s function. Using the eigenfunction expansion, shown in ear-
lier publications to be a powerful tool for analyzing superradiance 
and other phenomena in the linear regime [7–10], I showed it to 
be also a powerful tool for analyzing this and associated prob-
lems in the nonlinear regime. The mathematical expansion of the 
dynamical variables in eigenmodes permits the replacement of 
the Maxwell–Bloch equations describing the atoms–field interac-
tion written as a system of coupled nonlinear partial differential 

* Tel.: +1 212 650 8133.
E-mail address: jmanassah@gmail.com.

equations to a system of coupled nonlinear ordinary differential 
equations for the expansion coefficients. Following these expan-
sion coefficients in time allowed for a more transparent physical 
analysis of superradiance than existing numerical methods directly 
integrating the coupled Maxwell–Bloch equations [11].

In the present paper, I analyze, using the same eigenmode ex-
pansions, the problem of the emission from the slab if the atomic 
system is initially only partially inverted. This is a problem of phys-
ical interest for many experimental instances and in applications.

The main results obtained here are that for values of the initial 
population difference between the ground and excited state atoms 
n(T = 0) > nmax, there is no superradiant emission; for nmax >

n(T = 0) > ncrit there is weak intensity superradiance, as only the 
coefficient of the dominant eigenmode in the polarization expan-
sion is significant; while for ncrit > n(T = 0) ≥ −1 (in our notation, 
n(T = 0) = −1, represents a system that is completely inverted) 
multiple eigenmode expansion coefficients contribute to the elec-
tric field at either slab exit planes and the intensity of the super-
radiant emission is everywhere in this range within two orders of 
magnitude of the superradiant intensity for the case of an initially 
complete inversion. I show, further, that the superradiant emission 
intensity increases exponentially as a function of −n(T = 0), in the 
intermediate range; while it increases approximately linearly as a 
function of −n(T = 0) in the range of parameter including that of 
the complete inversion case.

The paper is organized as follows: in Section 2, I summarize the 
key properties of the 1D L–W eigenmodes. In Section 3, I give the 
results of integrating the coupled ordinary differential equations 
for the eigenmode expansion coefficients of the physical variables 
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Fig. 1. (a) The real part and (b) the imaginary part of the odd (‘o’) and even (‘∗’) wave-vectors are plotted as functions of the eigenmode index. u0 = k0 z0 = 7π/4.

for a number of values of the initial population difference. I con-
clude in Section 4. In Appendix A, I give the coupled ordinary dif-
ferential equations which govern the dynamics of the eigenmode 
expansion coefficients derived in [6].

2. Eigenmode expansion

As was previously shown in [6], if one decomposes the system’s 
dynamical variables, i.e. the atomic polarization, the difference in 
population between the two atomic states and the Rabi frequency 
associated with the electric field, in the basis formed by the eigen-
functions of the integral equation:

Λsϕs(Z) = u0

2

1∫
−1

dZ ′ exp
(
iu0

∣∣Z − Z ′∣∣)ϕs
(

Z ′), (1)

as follows

ψ(Z , T ) =
∑

s

eo
s (T )ϕ̃o

s (T ) +
∑

s

ee
s(T )ϕ̃e

s (T ), (2)

n(Z , T ) =
∑

s

ηo
s (T )ϕ̃o

s (T ) +
∑

s

ηe
s (T )ϕ̃e

s (T ), (3)

χ(Z , T ) =
∑

s

po
s (T )ϕ̃o

s (T ) +
∑

s

pe
s(T )ϕ̃e

s (T ), (4)

the set of Maxwell–Bloch equations reduce to an infinite set of 
coupled ordinary first order differential equations in the expansion 
coefficients summarized in Appendix A. (The tilde over the eigen-
function indicates that the normalized eigenfunctions are used in 
the expansions expressions.)

In what follows, I shall use the system of units where all quan-
tities are normalized to the parameter of interatomic cooperativity 
C = 4π N℘2

h̄V , where N is the number of particle, V is the slab vol-
ume, and ℘ is the reduced dipole moment of the atomic transition 
(its normalization is uniquely determined when given as a func-
tion of the isolated atom decay rate, see below). In these units, the 
transverse decay rate Γ2, due to the instantaneous dipole–dipole 
interaction between atoms, is equal to 2.33/4, and the normal-
ized Lorentz shift is equal to 1/3. The isolated atom decay rate 
γ1 = 4

3 ℘2k3
0/h̄ specifies the longitudinal decay rate of the system. 

The normalized coordinates are respectively given by

Z = z/z0 T = Ct Γ1 = γ1/C Γ2 = γ2/C

u0 = k0z0 ΩL = ωL/C .

The slab thickness is 2z0, and ΓT = Γ1
2 + Γ2.

It is to be noted that the above eigenfunctions belong to one of 
two families, each with a definite spatial parity (odd, even), given 
respectively by
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Fig. 2. The complex plane loci of the odd (‘o’) and even (‘∗’) eigenvalues. u0 =
k0 z0 = 7π/4.

where the complex wavevectors (vo
s , ve

s ) are solutions of the tran-
scendental equations
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where s, a positive integer, is the index of the solution.
The eigenvalues associated with these eigenfunctions are

given by:
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I plot in Fig. 1, the real part and the imaginary part of the char-
acteristic wave-vectors as functions of the index, and in Fig. 2, the 
locus in the complex plane of the eigenvalues for u0 = 7π/4. The 
important thing to note in these figures is that: (i) the real part 
of the characteristic vector for the odd and even solutions differ 
from each other by approximately π/2, (ii) the eigenvalue with the 
largest real part (called dominant mode) is that which has the real 
part of its wavevector approximately equal to u0, and that (iii) ex-
cept for the dominant and other finite number of modes (called 
leading modes) with indices close to that of the dominant mode, 
all the other modes eigenvalues cluster around the origin of the 
complex plane.

The eigenfunctions of Eqs. (5)–(6) obey the following pseudo-
orthogonal relations
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