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Weak measurements with imaginary weak values are reexamined in light of recent experimental results. 
The shift of the meter, due to the imaginary part of the weak value, is derived via the probability of 
post-selection, which allows considering the meter as a distribution of a classical variable. The derivation 
results in a simple relation between the change in the distribution and its variance. By applying this 
relation to several experimental results, in which the meter involved the time and frequency domains, it 
is shown to be especially suitable for scenarios of that kind. The practical and conceptual implications of 
a measurement method, which is based on this relation, are discussed.

© 2014 Published by Elsevier B.V.

1. Introduction

Weak values were introduced, in a seminal paper by Aharonov, 
Albert and Vaidman [1], as the result of a weak measurement on 
a pre- and post-selected system. Their ideas were met with some 
suspicion [2,3] but have been shown to be valid [4]. Since then, 
they were used for various tasks such as directly measuring quan-
tum states [5–7] or observation of tiny effects [8,9]. Even though 
their practical benefits were questioned [10], many new schemes 
for utilizing weak values are being published rather frequently in 
recent years. A wide range of challenges, such as charge detection 
[11], measuring small time delays [12–14] or observing Kerr non-
linearity [15], were addressed. Additional improvements, such us-
ing orbital-angular momentum [16], were demonstrated and some 
extensions to the formalism were suggested [17,18].

Recently, weak measurements were demonstrated, using the 
time and frequency domains, in a number of experiments: improv-
ing phase estimation [19,20], measuring velocity [21] and studying 
atomic spontaneous emission [22]. In all these schemes, imaginary 
weak values were used in order to make transformations between 
effects in time and frequency. In [19,20] a time delay was con-
verted to a spectral shift and in [21,22] it was vice versa. The 
treatment of the time and frequency domains as a measurement 
device (meter) was originally suggested by Brunner and Simon [12]
and it is in some contrast to the usual formalism of weak mea-
surement, where the meter is described using quantum variables 
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such as position and momentum. In case one wishes to treat time 
and frequencies as quantum variables, some conceptual difficulties 
might be encountered. In this work, we provide a common theo-
retical framework for the experimental results, which is focused on 
the measurement of imaginary weak values. It is based on the use 
of a classical random variable for describing the meter, rather than 
a wavefunction. The formalism is general for any scenario involv-
ing imaginary weak values, and it can be applied for a wide range 
of weak measurements schemes.

The weak value of an observable C on a pre- and post-selected
system, described by the two-state vector 〈Φ| |Ψ 〉, is given by

C w ≡ 〈Φ|C |Ψ 〉
〈Φ|Ψ 〉 . (1)

A few properties of this expression differ it from other values that 
can be assigned to an observable, like an expectation value or 
eigenvalues. It can be much larger, if the pre- and post-selection 
states are nearly orthogonal, and it is complex in general [23]. The 
imaginary part of the weak value was found to be highly useful 
for practical goals [24] and its significance was broadly discussed 
[25]. Imaginary weak values were used in most, if not all, of the 
experiments showing increased precision.

2. The standard formalism

The standard formalism of weak measurements is based on an 
interaction between a pre- and post-selected system to a meter, 
which is also considered as a quantum system. The interaction can 
be represented using a Hamiltonian
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H = g(t)P C, (2)

where C is an observable on the system, P is an operator on the 
meter and g(t) is a coupling function satisfying 

∫
g(t)dt = k. If the 

strength of this interaction is small, the wavefunction of the meter 
is real valued and the system is pre- and post-selected to 〈Φ| |Ψ 〉, 
the change in the average of Q , a variable conjugate to P , would 
be [26]

δQ = k Re C w , (3)

and the change in the average of P would be

δP = 2k Im C w Var(P ), (4)

where Var(P ) = 〈P 2〉 − 〈P 〉2 is the variance of P . Here, we can 
consider the average 〈•〉 to be taken with respect to the initial 
wavefunction of the meter. Later, we will extend the notion of av-
erage to encompass a more statistical distribution.

The shifts (3) and (4) can be derived using the AAV effect, i.e. 
replacing the operator C in (2) by its weak value and calculat-
ing the evolution of the meter under the effective Hamiltonian. In 
the case C w is real this Hamiltonian is self-adjoint, which corre-
sponds to a unitary evolution. When C w is complex, the resulting 
non unitary evolution of the meter might seem unphysical, espe-
cially since P is a constant of motion under the Hamiltonian (2). 
Below, we will offer an alternative derivation of (4) and show that 
unlike (3) it does not require interference in the wavefunction of 
the meter.

3. Derivation of the main result

Let us consider a simpler Hamiltonian

H = g̃(t)C, (5)

where g̃(t) is a coupling function satisfying 
∫

g̃(t)dt = k̃. With the 
assignments g̃(t) = g(t)P and k̃ = kP , we can recover the inter-
action (2), but we can also regard k̃ as a parameter so (5) would 
operate only on the Hilbert space of the system. Since our interest 
is in the regime of weak interactions we can assume k̃ � 1. If the 
system is initially in a state |Ψ 〉, then after the evolution caused 
by (5), the probability of finding it in a state |Φ〉, for a known k̃ is 
given by

P
(|Φ〉∣∣k̃) = ∣∣〈Φ|e−ik̃C |Ψ 〉∣∣2

= ∣∣〈Φ|Ψ 〉∣∣2
(1 + 2k̃ Im C w) + O

(
k̃2). (6)

Now let us consider a situation where the value of k̃ varies 
according to some distribution f (k̃). This is to say that the ex-
periment is repeated many times and in each run k̃ can obtain a 
different value, where the probability that k̃ = x is f (x) if k̃ is dis-
crete or f (x)dx if it is continuous. Using this distribution we can 
calculate different moments of k̃, for example its average is given 
by 〈k̃〉 = ∫

k̃ f (k̃)dk̃. For the interaction to be weak, f (k̃) should 
have a significant value only where |k̃| � 1 so the average of k̃ for 
this distribution, or any of its moments, should be small. We can 
later relax this requirement to have only the width of the distribu-
tion small.

A post-selection to |Φ〉 means we are interested only in the 
cases where the system was found in the state |Φ〉. Since the prob-
ability for this depends on k̃, the post-selection will modify the 
distribution of k̃. According to Bayes’ theorem, the probability to 
get some value of k̃, given a post-selection |Φ〉, is

fΦ(k̃) = f (k̃)P (|Φ〉|k̃)

P (|Φ〉) (7)

where P (|Φ〉) = ∫
P (|Φ〉|k̃) f (k̃)dk̃ � |〈Φ|Ψ 〉|2(1 + 2〈k̃〉 Im C w) is 

the average probability of post-selection. By inserting (6) into (7)
we can calculate the modified average of k̃, up to second order 
in k̃:

〈k̃〉Φ =
∫

k̃ fΦ(k̃)dk̃

�
∫

k̃(1 + 2k̃ Im C w) f (k̃)dk̃

1 + 2〈k̃〉 Im C w

� 〈k̃〉 + 2 Im C w
(〈

k̃2〉 − 〈k̃〉2). (8)

A quantity of interest for observing some effect in an experiment 
can be the difference between the post-selected and initial aver-
ages

δk̃ = 〈k̃〉Φ − 〈k̃〉 � 2 Im C w Var(k̃), (9)

where Var(k̃) = 〈k̃2〉 − 〈k̃〉2 = (�k̃)2 is the initial variance of k̃. This 
simple relation between the change in a parameter and its uncer-
tainty is our main result. It should be noted that this result does 
not depend on the specific form of f (k̃), i.e. it is not assumed to 
be, for example, Gaussian. The only assumption, which leads to the 
absence of higher order terms in the result, is that f (k̃) have sig-
nificant values only where k̃ is small. This assumption is discussed 
in details in Section 3.1.

We can see that if k̃ = kP , where k is constant and only P
varies, the result (9) is the same as (4). The alternative derivation 
highlights the fact that the variance appearing there is valid for 
any type of variations, and not only to pure quantum uncertainty. 
Naturally, quantum mechanics provides a complete description of 
any system, so one can argue that any variation in the value of 
a physical quantity is essentially quantum uncertainty. However, 
considering a fully quantum description can unnecessarily compli-
cate the analysis of an experimental setup. A formalism involving 
the distribution of a classical parameter can be much simpler than 
a complete quantum description.

3.1. The regime for the validity of weakness

The result (9) regards only the change and variance of k̃ and 
thus it is independent of its average. That is to say, if we add some 
known constant to k̃, the difference between the initial and post 
selected averages will not be affected, as long as we stay in the 
regime where |k̃| � 1. As we will now show, the result (9) can 
hold even when 〈k̃〉 is not negligible, provided that we take it into 
account by modifying C w . By doing this, we can treat separately 
the known part of k̃, which is its average 〈k̃〉, and the unknown 
part, which is represented by its uncertainty �k̃.

The evolution U = e−ik̃C , caused by (5), can be written as U =
U1U2, where U1 = e−i(k̃−〈k̃〉)C and U2 = e−i〈k̃〉C . Thus, the probabil-
ity of post-selection is given by |〈Φ|U1|Ψ ′〉|2, where |Ψ ′〉 = U2|Ψ 〉. 
By repeating the calculations of (6), (7) and (8), we can see that 
Eq. (9) is unchanged except for the weak value itself, which is 
given by C w ≡ 〈Φ|C |Ψ ′〉

〈Φ|Ψ ′〉 . Now, the calculations involved only the 
deviation k̃ − 〈k̃〉 and all moments higher than 2, of this quan-
tity, have been neglected. Each moment was also multiplied by the 
real or imaginary parts of an expression of the form ((Cn)w)m for 
some n, m. Strictly speaking, all these terms have to be small, but 
in order to see this explicitly, one should specify the distribution 
f (k̃), the state 〈Φ| |Ψ 〉 and the observable C . However, in case 
the second moment, Var(k̃), is large, higher (even) moments can-
not be small. Moreover, in order for the weak value expressions to 
be large, the scalar product in the denominator 〈Φ|Ψ ′〉, which ap-
pears in all of them, have to be small. Thus, a necessary condition 
for the validity of (9) is that
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