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Synchronization of two synaptically coupled neurons with memory and synaptic delay is studied using 
the Rulkov map, one of the simplest neuron models which displays specific features inherent to bursting 
dynamics. We demonstrate a transition from lag to anticipated synchronization as the relationship 
between the memory duration and the synaptic delay time changes. The neuron maps synchronize either 
with anticipation, if the memory is longer than the synaptic delay time, or with lag otherwise. The mean 
anticipation time is equal to the difference between the memory and synaptic delay independently of 
the coupling strength. Frequency entrainment and phase-locking phenomena as well as a transition from 
regular spikes to chaos are demonstrated with respect to the coupling strength.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Biological neural networks consist of a large number of indi-
vidual neurons interconnected in a complex manner usually via 
synapses through dendrodendritic microcircuits. The information 
processing tasks of neural networks are performed on the indi-
vidual neuron level by generation of temporal sequences of action 
potentials, and then elaborated at mesoscales and macroscales by 
means of a network of neuron–neuron interaction. On the level of 
a single neuron, mechanisms and the nature of the neuron activity 
have been extensively investigated over the past decade; and the 
available literature is already redundant of rigorous and important 
results concerning the neuron ability to process and compute [1].

Synchronization of coupled neurons is relevant for coding and 
signal transmission allowing better understanding of the brain 
functionality and revealing distinctive features of some brain dis-
eases. The interest in mathematical modeling of neuron syn-
chronous behavior has significantly increased after real neurobi-
ological experiments with two electrically coupled neurons [2,3], 
where various synchronization types have been identified. To sim-
ulate cooperative neuron dynamics, different models of coupled 
neurons based on either iterative maps [4–16] or differential equa-
tions [17–19,2,20–23] in various coupling configurations have been 
developed. Depending on both the coupling strength and the de-
lay time, coupled neurons can be matched either in timings of 
their bursts (burst synchronization) [24], in phase [21], with lag, 
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or anticipated [9,15,25,26]. Neuron dynamics were studied regard-
ing intrinsic and external parameters including time constants, e.g., 
the influence of the rate of synaptic activation and deactivation on 
synchronization of bursting biological neurons. Furthermore, under 
specific conditions, intermittency between synchronized states was 
found when the time constant increased [3].

One of the important neuron functions is information transmis-
sion through a neuron network. This process is characterized by a 
certain delay time due to a finite velocity of the action potential 
propagation along the neuron axon and time lapses in dendritic 
and synaptic processes [27]. The delay in synaptic connections [28]
is required for a neurotransmitter to be released from a presy-
naptic membrane, diffuse across the synaptic cleft, and bind to a 
receptor site on the postsynaptic membrane. On the other hand, 
feedback loops involving one or more neurons are ubiquitous in a 
nervous system [29]. The brain-stem feedback loops are thought to 
be responsible for short-term memory [30] that was predicted by 
Hermann Ebbinghaus in 1885 [31].

Since there are two different delay times, the interesting ques-
tion arises: How do these time delays affect synchronization of 
synaptically coupled neurons? To answer this question, we ex-
plore one of the simplest neuron models, the Rulkov map [32,33]. 
Although this map is not explicitly referred to physiological pro-
cesses in the membrane, it is capable of extraordinary complexity 
and quite specific neuron dynamics (silence, periodic spiking, and 
chaotic bursting), thus replicating a great deal of experimentally 
observed regimes [2,3,9], e.g., spike adaptation [34], routes from 
silence to bursting mediated by subthreshold oscillations [35], 
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Fig. 1. (a) Function f (xn, yn) for σ = 0.3 and (b–f) time series showing different dynamical regimes: (b) Silence after transients for σ = −0.15, (c) tonic spikes for σ = −0.025, 
and (d–f) bursts for (d) σ = −0.30, (e) 0.15, and (f) 0.30. α = 5.3, μ = 0.001.

emergent bursting [32], phase and antiphase synchronization with 
chaos regularization [9,33], as well as complete and burst synchro-
nization [36–38].

Recently, Matias et al. [22,23] demonstrated a smooth transi-
tion from lag to anticipated synchronization of coupled Hodgkin–
Huxley neurons [39] when the inhibitory synaptic conductance 
was increased. In the map-based models the time delay is inde-
pendent of the coupling strength and only determined by the dif-
ference between the delay in coupling and neuron memory. In this 
work we will study the transition from lag to anticipated synchro-
nization as a direct function of this difference. Being computation-
ally more efficient than complex phenomenological models [39,40], 
the map-based models can improve qualitative understanding of 
the synchronous neuron behavior.

The paper is organized as follows. In Section 2 we review the 
theoretical framework of the Rulkov neuron and describe parame-
ters explored in the model. Section 3 is devoted to synchronization 
of two coupled neurons; we show how two delay times affect 
synchronization. Finally, in Section 4 we conclude our results and 
outline a possible extension of this work.

2. Model equations

2.1. Dynamics of a single Rulkov neuron

The Rulkov map is defined by the following equations [9]

xn+1 = f (xn, yn), (1)

yn+1 = yn − μ(xn + 1) + μσ, (2)

f (xn, yn)

=
{

α/(1 − xn) + yn for xn ≤ 0,

α + yn for 0 < xn < α + yn and xn−1 ≤ 0,

−1 for xn ≥ α + yn or xn−1 > 0,

(3)

Fig. 2. Coupling scheme of two Rulkov neurons with synaptic delay s and mem-
ory m.

where xn and yn are the fast and slow variables and α, μ, and 
σ are intrinsic parameters. The map dynamics depends mostly 
on α and σ as shown in Fig. 1, where we plot the map func-
tion Eq. (3) [Fig. 1(a)] and typical times series illustrating different 
dynamical regimes [Figs. 1(b–f)]. The parameter σ regulates the 
neuron response under the action of the external dc bias current 
and synaptic inputs and therefore it is used as a control parameter 
to select a desired dynamical regime. For σ < −0.3 the neuron is 
in a silent state (subthreshold oscillations). For larger σ , the neu-
ron generates repetitive spike bursts; the number of spikes in a 
burst train increases with σ , as seen from Figs. 1(c–f). Such a be-
havior of the Rulkov map mimics real neuron dynamics.

2.2. Two coupled Rulkov neurons

Now, we consider the scheme of two coupled Rulkov neurons 
shown in Fig. 2, where a memorized state of a postsynaptic neuron 
is coupled with a delayed state of a presynaptic neuron. While the 
presynaptic neuron is described by Eqs. (1)–(3), the postsynaptic 
neuron is modeled by the following equations
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