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Motion of curves and surfaces in R3 lead to nonlinear evolution equations which are often integrable. 
They are also intimately connected to the dynamics of spin chains in the continuum limit and integrable 
soliton systems through geometric and gauge symmetric connections/equivalence. Here we point out the 
fact that a more general situation in which the curves evolve in the presence of additional self-consistent 
vector potentials can lead to interesting generalized spin systems with self-consistent potentials or soliton 
equations with self-consistent potentials. We obtain the general form of the evolution equations of 
underlying curves and report specific examples of generalized spin chains and soliton equations. These 
include principal chiral model and various Myrzakulov spin equations in (1 + 1) dimensions and their 
geometrically equivalent generalized nonlinear Schrödinger (NLS) family of equations, including Hirota–
Maxwell–Bloch equations, all in the presence of self-consistent potential fields. The associated gauge 
equivalent Lax pairs are also presented to confirm their integrability.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Integrable soliton equations have interesting geometric connec-
tions/equivalence with moving space curves and surfaces both in 
(1 + 1) and (2 + 1) dimensions [1–6]. These connections especially 
manifest through integrable spin chains. One of the most interest-
ing connections is the mapping of the Heisenberg spin chain onto 
the integrable nonlinear Schrödinger equation, where the square 
of curvature of the moving curve is related to the energy density 
of the spin chain and the torsion is related to the current den-
sity [7,8]. Many of the other soliton equations can also be given 
such connections [1–3]. This relationship can also be reinterpreted 
as a gauge transformation between the spin systems and soliton 
equations so that the Lax pairs between the two systems can be 
mapped onto each other and so also the zero curvature condi-
tions [9,10].

One can also extend this interconnection to moving curves 
and surfaces in (2 + 1) dimensions [6,11–14]. In this way one 
can identify topological conserved quantities with geometrical 
invariants. For example, one can map Ishimori spin equation 
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and Myrzakulov-I equation with Davey–Stewartson and Zakharov–
Strachan (2 +1)-dimensional nonlinear Schrödinger equations [14], 
respectively.

In this paper, we present a further generalization by incorpo-
rating an additional self-consistent potential in the presence of 
which the curves and surfaces move. The corresponding general-
ized evolution equations for the moving curves in R3 is presented. 
The generalization to moving surfaces will be presented separately. 
Several interesting generalized spin systems and soliton equations 
with self-consistent potentials can then be identified. These in-
clude the principal chiral field equation, various generalizations 
of Myrzakulov family of spin equations [15,16] in (1 + 1) dimen-
sions and their geometrically equivalent counterparts of general-
ized nonlinear Schrödinger family of equations in the presence of 
self-consistent vector fields.

The plan of the paper is as follows. In Section 2, we briefly re-
view the nonlinear dynamics of moving space curves in (1 + 1)

dimensions and deduce the evolution equations for the curvature 
and torsion of the curve. In Section 3, we generalize the motion 
equations in the presence of a self-consistent vector potential and 
deduce the modified form of these equations which now also in-
volve the components of the vector potentials. In Section 4, we 
identify several specific cases of spin systems in the presence of 
vector potentials which can be mapped onto the moving curves. 
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These are then transformed into generalized soliton equations. In 
Section 5, the gauge equivalent Lax pairs are presented for the 
various systems discussed in the previous section to prove the 
integrability of them. Then in Section 6 the equivalent induced 
surfaces are identified. Finally in Section 7, we present our con-
clusions.

2. Motion of curves in (1 + 1) dimensions

We consider a space curve in R3. In (1 + 1) dimensions the 
motion of such curves is defined by the following Serret–Frenet 
equations and rigid body equation [3], respectively,

∂

∂x

⎛
⎝ �e1

�e2
�e3

⎞
⎠ = C

⎛
⎝ �e1

�e2
�e3

⎞
⎠ ,

∂

∂t

⎛
⎝ �e1

�e2
�e3

⎞
⎠ = G

⎛
⎝ �e1

�e2
�e3

⎞
⎠ . (1)

Here �e1, �e2 and �e3 are the unit tangent, normal and binormal 
vectors, respectively, to the curve and x is the arclength param-
eterizing the curve. The unit tangent vector �e1 is given by �e1 =
∂�r
∂x = 1√

g
∂�r
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, where g is the metric g = ∂�r
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that x(θ, t) = ∫ θ

0
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g(θ ′, t)dθ ′ . Here θ defines a smooth curve and 

�r(θ, t) is the position vector of a point on the curve at time t . In 
(1) C and G are given by
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As it is well known, the curvature and torsion of the curve are 
given respectively as

κ = (�e1x · �e1x)
1
2 ,

τ = κ−2�e1 · (�e1x ∧ �e1xx). (3)

The compatibility condition of Eqs. (1) is

Ct − Gx + [C, G] = 0, (4)

or in terms of elements it reads

κt = ω3x + τω2, (5)

τt = ω1x − κω2, (6)

ω2x = τω3 − κω1. (7)

The above formalism allows one to construct the so-called 
L-equivalents (Lakshmanan equivalence) of spin systems. Here we 
present an example which shows how this formalism works. Con-
sidering the Heisenberg ferromagnet equation (HFE) [7],

�St + �S ∧ �Sxx = 0, (8)

where �S = (S1, S2, S3) is a unit spin vector so that S2
1 + S2

2 +
S2

3 = 1, we assume the identification

�e1 ≡ �S. (9)

Then from the HFE (8) it follows that

ω1 = −κxx

κ
+ τ 2, (10)

ω2 = κx, (11)

ω3 = κτ . (12)

Substituting these expressions of ω j into Eqs. (5)–(7), we arrive at 
the system

κt − (κτ )x − κxτ = 0, (13)

τt +
(

κxx

κ

)
x
− 2ττx + κκx = 0. (14)

Let us introduce the following complex function q = κ
2 e−i∂−1

x τ . It is 
easy to check that this function satisfies the well known nonlinear 
Schrödinger equation [7]

iqt + qxx + 2|q|2q = 0. (15)

Thus the HFE is L-equivalent to the NSE and vice versa. Our aim 
in this paper is to construct L-equivalent counterparts of some 
integrable spin systems with self-consistent potentials in (1 + 1)

dimensions.

3. Moving curves in (1 + 1) dimensions in the presence of 
self-consistent potentials

We now introduce a self-consistent vector potential �W (x, t) in 
R

3 derivable as

∂ �W
∂x

= �W x = 2a �W × �e1, (16)

where �e1 is the unit tangent vector, see Section 2, and a is a con-
stant parameter.

Expressing �W in the basis of the unit orthonormal triad speci-
fying the moving curve as

�W = W1(x, t)�e1 + W2(x, t)�e2 + W3(x, t)�e3, (17)

the defining equations for the components of the vector potential 
can be rewritten, after using (1) and (2), as

W1x = κW2, (18)

W2x = −κW1 + τ W3 + 2aW3, (19)

W3x = −τ W2 − 2aW2. (20)

Note that the above three equations imply �W 2 = W 2
1 +W 2

2 +W 2
3 =

C(t), where C(t) is a function of t only.
In the presence of the potential field, the evolution equation 

for the moving curve gets modified due to the self-consistent in-
teraction. The underlying evolution equations for the triad can be 
identified as follows.

The evolution for the unit tangent vector can be modified in a 
self-consistent way as

�e1t = �Ω × �e1 + 2a−1 �W × �e1 (21)

where (from (1) and (2))
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Now using the Serret–Frenet equations for the spatial variation of 
the trihedral along the arc length, see Eq. (1), one can obtain
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and
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)
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In other words, the dynamical equations specifying the unit trihe-
dral gets modified from (1) in the presence of the self-consistent 
potential �W (x, t) as
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