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The hallmark of deterministic chaos is that it creates information—the rate being given by the 
Kolmogorov–Sinai metric entropy. Since its introduction half a century ago, the metric entropy has been 
used as a unitary quantity to measure a system’s intrinsic unpredictability. Here, we show that it naturally 
decomposes into two structurally meaningful components: A portion of the created information—the 
ephemeral information—is forgotten and a portion—the bound information—is remembered. The bound 
information is a new kind of intrinsic computation that differs fundamentally from information creation: 
it measures the rate of active information storage. We show that it can be directly and accurately 
calculated via symbolic dynamics, revealing a hitherto unknown richness in how dynamical systems 
compute.

© 2014 Elsevier B.V. All rights reserved.

The world is replete with systems that generate information—
information that is then encoded in a variety of ways: Erratic 
ant behavior eventually leads to intricate, structured colony nests 
[1,2]; thermally fluctuating magnetic spins form complex domain 
structures [3]; music weaves theme, form, and melody with sur-
prise and innovation [4]. We now appreciate that the underlying 
dynamics in such systems is frequently deterministic chaos [5,6]. 
In others, the underlying dynamics appears to be fundamentally 
stochastic [7]. For continuous-state systems, at least, one oper-
ational distinction between deterministic chaos and stochasticity 
is found in whether or not information generation diverges with 
measurement resolution [8]. This result calls back to Kolmogorov’s 
original use [9] of Shannon’s mathematical theory of communi-
cation [10] to measure a system’s rate of information generation 
in terms of the metric entropy. Since that time, metric entropy 
has been understood as a unitary quantity. Whether determinis-
tic or stochastic, it is a system’s degree of unpredictability. Here, 
we show that this is far too simple a picture—one that obscures 
much.

To ground this claim, consider two systems. The first, a fair 
coin: Each flip is independent of the others, leading to a simple 
uncorrelated randomness. As a result, no statistical fluctuation is 
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predictively informative. For the second system consider a stock 
traded via a financial market: While its price is unpredictable, the 
direction and magnitude of fluctuations can hint at its future be-
havior. (This, at least, is the guiding assumption of the now-global 
financial engineering industry.) We make this distinction rigorous 
here, dividing a system’s information generation into a component 
that is relevant to temporal structure and a component divorced 
from it. We show that the structural component captures the sys-
tem’s internal information processing and, therefore, is of practical 
interest when harnessing the chaotic nature of physical systems to 
build novel machines and devices [11]. We first introduce the new 
measures, describe how to interpret and calculate them, and then 
apply them via a generating partition to analyze several dynamical 
systems—the Logistic, Tent, and Lozi maps—revealing a previously 
hidden form of active information storage.

We observe these systems via an optimal measuring instru-
ment—called a generating partition—that encodes all of their be-
haviors in a stationary process: A distribution Pr(. . . , X−2, X−1, X0,

X1, X2, . . .) over a bi-infinite sequence of random variables with 
shift-invariant statistics. A contiguous block of observations Xt:t+�

begins at index t and extends for length �. (The index is inclu-
sive on the left and exclusive on the right.) If an index is infinite, 
we leave it blank. So, a process is compactly denoted Pr(X:). Our 
analysis splits X: into three segments: the present X0, a single 
observation; the past X:0, everything prior; and future X1: , every-
thing that follows.
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Fig. 1. A process’s I-diagram showing how the past X:0, present X0, and future 
X1: partition each other into seven distinct information atoms. We focus only on 
the four regions contained in the present information H[X0] (blue circle). That is, 
the present decomposes into three components: ρμ (horizontal lines), rμ (verti-
cal lines), and bμ (diagonal crosshatching). The redundant information ρμ overlaps 
with the past H[X:0]; the ephemeral information rμ falls outside both the past and 
the future H[X1:]. The bound information bμ is that part of H[X0] which is in the 
future yet not in the past. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)

The information-theoretic relationships between these three 
random variable segments are graphically expressed in a Venn-like 
diagram, known as an I-diagram [12]; see Fig. 1. The rate hμ of 
information generation is the amount of new information in an 
observation X0 given all the prior observations X:0:

hμ = H[X0|X:0], (1)

where H[Y |Z ] denotes the Shannon conditional entropy of random 
variable Y given variable Z . This quantity arises in various contexts 
and goes by many names: e.g., the Shannon entropy rate and the 
Kolmogorov–Sinai metric entropy, mentioned above [8]. The com-
plement of the entropy rate is the predicted information ρμ:

ρμ = I[X:0 : X0], (2)

where I[Y : Z ] denotes the mutual information between random 
variables Y and Z [12]. Hence, ρμ is the information in the 
present that can be predicted from prior observations. Together, we 
have a decomposition of the information contained in the present: 
H[X0] = hμ + ρμ .

A simple application of the entropy chain rule [12] to Eq. (1)
leads us to a different view:

hμ = I[X0 : X1:|X:0] + H[X0|X:0, X1:]
= bμ + rμ. (3)

This introduces two new information measures:

bμ = I[X0 : X1:|X:0] and (4)

rμ = H[X0|X:0, X1:]. (5)

That is, created information (hμ) decomposes into two parts: in-
formation (bμ) shared by the present and the future but not in the 
past and information (rμ) in the present but in neither the past 
nor the future.

The rμ component was first studied by Verdú and Weiss-
man [13] as the erasure entropy (their H−) to measure informa-
tion loss in erasure channels. To emphasize that it is information 
existing only in a single moment—created and then immediately 
forgotten—we refer to rμ as the ephemeral information. The sec-
ond component bμ we call the bound information since it is in-
formation created in the present that the system stores and that 
goes on to affect the future.1 It was first studied as a measure 

1 Our terminology avoids the misleading use of the phrase “predictive informa-
tion” for bμ . The latter is not the amount of information needed to predict the 
future. Rather, it is part of the predictable information—that portion of the future 
which can be predicted.

of “interestingness” in computational musicology by Abdallah and 
Plumbley [14]. For a more complete analysis of this decomposi-
tion, as well as computation methods and related measures, see 
Ref. [15].

Isolating the information H[X0] contained in the present and 
identifying its components provides the partitioning illustrated 
in Fig. 1. This is a particularly intuitive way of thinking about 
the information contained in an observation. While some behav-
ior (ρμ) can be predicted, the rest (hμ = bμ + rμ) cannot. Of that 
which cannot be predicted, some (bμ) plays a role in the future 
behavior and some (rμ) does not. As such, this is a natural decom-
position of a time series; one that results in a semantic dissection 
of the entropy rate.

By way of an example, consider a few simple processes and 
how their present information decomposes into these three com-
ponents. A periodic process of alternating 0s and 1s
(. . . 01010101 . . .) has H[X0] = 1 bit since 0s and 1s occur equally 
often. Given a prior observation, one can accurately predict ex-
actly which symbol will occur next and so H[X0] = ρμ = 1 bit, 
while rμ = bμ = 0 bits. On the other extreme is a fair coin flip. 
Again, each outcome is equally likely and so H[X0] = 1 bit. How-
ever, each flip is independent of all others and so H[X0] = rμ = 1
bit, while ρμ = bμ = 0 bits.

Between these two extrema lie interesting processes: those 
with stochastic structure. Processes expressing a fixed template, like 
the periodic process above, contain a finite amount of information. 
Those with stochastic structure, however, constantly generate in-
formation and store it in the form of patterns. Being neither purely 
predictable nor independently random, these patterns are captured 
by bμ . The more intricate the organization, the larger bμ . More 
to the point, generating these patterns requires intrinsic computa-
tion in a system—information creation, storage, and transformation 
[16]. We propose bμ as a simple method of discovering this type 
of physical computation: Where there are intricate patterns, there 
is sophisticated processing.

How useful is the proposed decomposition and its measures? 
To answer this we analyze several discrete-time chaotic dynam-
ical systems—the Logistic and Tent maps of the interval and the 
Lozi map of the plane—uncovering a number of novel properties 
embedded in these familiar and oft-studied systems. As an inde-
pendent calibration for the measures, we employ Pesin’s theorem 
[17]: hμ is the sum of the positive Lyapunov characteristic expo-
nents (LCEs). The maps here have at most one positive LCE λ, so 
hμ = max{0, λ}. The symbols s0, s1, s2, . . . , sN for each process we 
analyze come from a generating partition. We produce a long sam-
ple of N ≈ 1010 symbols, extracting subsequence statistics via a 
sliding window.2 Each window consists of a past, present, and fu-
ture symbol sequence and we estimate rμ and bμ using truncated 
forms of Eqs. (4) and (5).

Consider first the Logistic map, perhaps one of the most studied 
chaotic systems:

xn+1 = axn(1 − xn), (6)

where a ∈ [0, 4] is the control parameter and the initial condition 
is x0 ∈ [0, 1]. Its generating partition is defined by:

sn =
{

0 if xn < 1
2 ,

1 if xn ≥ 1
2 .

(7)

2 Window width is adaptively chosen in inverse proportion to the LCE. When 
the latter is low we use a longer window than when the system is fully chaotic. 
The minimum window width of L = 31 and adaptive widths were chosen so that 
numerical estimates varied by less than 0.01% when the width is incremented.
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