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Discrimination between two quantum states is addressed as a quantum detection process where a 
measurement with two outcomes is performed and a conclusive binary decision results about the 
state. The performance is assessed by the overall probability of decision error. Based on the theory of 
quantum detection, the optimal measurement and its performance are exhibited in general conditions. 
An application is realized on the qubit, for which generic models of quantum noise can be investigated 
for their impact on state discrimination from a noisy qubit. The quantum noise acts through random 
application of Pauli operators on the qubit prior to its measurement. For discrimination from a noisy 
qubit, various situations are exhibited where reinforcement of the action of the quantum noise can 
be associated with enhanced performance. Such implications of the quantum noise are analyzed and 
interpreted in relation to stochastic resonance and enhancement by noise in information processing.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Quantum states naturally arise when one wants to process, 
store or retrieve information at the level of quantum objects, such 
as individual photons, electrons, ions or atoms. Information pro-
cessing with such quantum systems is a field of recent develop-
ment, and is currently the subject of intense research, with rich 
potentialities [1,2]. The statistical theory of information after Shan-
non has been applied to quantum systems to explore some of 
their capabilities for information processing and communication 
[3,4,1,2].

Another direction of recent interest at the interface between 
physics and information processing is the field of stochastic res-
onance or effects of enhancement by noise. In its early forms, 
stochastic resonance represents an enhancement of the response 
of a dynamical system occurring at an intermediate level of noise 
[5–7]. Stochastic resonance has progressively been shown feasible 
in a large variety of forms, in many systems and processes, with 
various measures of performance receiving enhancement by noise 
[6,7], and new extensions are regularly reported [8–10]. As a re-
sult, in an extended sense we adopt here, stochastic resonance can 
be understood as a situation where enhancement of the perfor-
mance in some definite task can be gained from the action of 
noise. For information processing, stochastic resonance as an en-
hancement by noise has been reported in different specific tasks, 
such as signal transmission [11–13], detection [14–19], estima-
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tion [20,21], sensor arrays [22–25], or in relation to the statisti-
cal theory of information [26–30], although mostly in a classical 
context. By contrast, stochastic resonance in a quantum context 
has been addressed by relatively much fewer studies. Early stud-
ies on quantum stochastic resonance have considered dynamics 
in a double-well potential of a time-dependent position operator 
driven by a periodic forcing and coupled to a heat bath [31–34]. 
More recently, stochastic resonance has been considered in rela-
tion to binary information transmission over noisy quantum chan-
nels [35–39]. The analyses of [35–39] exhibit some possibilities of 
stochastic resonance or enhancement by noise in qubit commu-
nication over quantum channels assessed by mutual information, 
fidelity or transmission rate.

In the present study we will consider an even more basic and 
fundamental informational operation on quantum systems. We will 
analyze a discrimination process between two alternative quan-
tum states, which can also be referred to as a quantum detection 
process [40–48]. In such a binary discrimination or detection pro-
cess, a quantum system can be in one of two possible states; 
and from a measurement with two outcomes, a binary decision is 
taken about which quantum state the system is in [40,41,49]. Con-
cerning quantum state discrimination in general, another distinct 
problem consists in unambiguous state discrimination [50–52,48]. 
Unambiguous state discrimination admits measurements that are 
not conclusive about which state the system is in. By contrast, the 
type of quantum state discrimination we investigate here, requires 
a decision about which state the system is in, each time a mea-
surement is performed. In this way, quantum state detection here 
will designate a conclusive discrimination between two alternative 
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quantum states. Imposing a conclusive discrimination exposes to 
detection errors, and the overall probability of detection error is 
taken as the performance to be optimized. Based on the theory 
of quantum detection [40,41], the optimal measurement and its 
performance are exhibited in general conditions. An application is 
realized to optimal state discrimination on a qubit. The qubit is 
a fundamental quantum system of reference with important sig-
nificance for quantum information. The case of the qubit, which 
can be worked out in detail, will allow us to test generic mod-
els of quantum noise which can affect the discrimination and its 
performance. The quantum noise is modeled as a noise channel 
acting on the qubit prior to measurement. Quantum state discrimi-
nation in this way is performed from a noisy qubit. The probability 
of error of the optimal detector operating on the noisy qubit will 
be analyzed in relation to stochastic resonance and enhancement 
by noise in information processing. Stochastic resonance is under-
stood here in the broad sense of a noise-enhanced performance, 
much as for instance in [35–37,39] for the quantum context. Yet 
the present study here represents the first exploration of its kind 
of stochastic resonance or favorable noise effects in quantum state 
detection. Quantum state detection as understood here with no in-
conclusive measurement, matches the problem of signal detection 
in the sense of classical (non-quantum) statistical information pro-
cessing [15,16,49]. Stochastic resonance or enhancement by noise 
has been shown feasible in classical detection problems [14–19]; 
and it is investigated here for the first time for quantum detection.

2. Optimal discrimination between two quantum states

As a standard detection situation [41,49], we assume that a 
quantum system, with complex Hilbert space HN of dimension N , 
can be in one of two possible quantum states. These two quan-
tum states can be pure states or mixed states, and are generally 
represented by the two (Hermitian positive unit-trace) density op-
erators ρ0 and ρ1. The system can be in state ρ0 or ρ1 respectively 
with known prior probabilities P0 or P1 = 1 − P0, as a result 
of its preparation. The detection problem is to determine, from 
a single non-repeated measurement, whether the quantum sys-
tem is in state ρ0 or ρ1 [41]. A generalized measurement [1] is 
performed on the system by means of a positive operator-valued 
measure (POVM) with two elements {M0, M1}. Each of the two 
POVM elements Mk , for k = 0, 1, is a positive Hermitian operator 
satisfying 0 ≤ Mk ≤ 1, and together summing to the identity oper-
ator 1 = M0 +M1. When the measurement outcome corresponding 
to Mk is obtained, then it is decided that the quantum system is 
in state ρk , for k = 0, 1. The POVM contains exactly two elements 
because the detection problem imposes that each time a measure-
ment is performed, a conclusive decision has to be obtained on 
whether the quantum system is in state ρ0 or ρ1. By contrast, 
unambiguous state discrimination as evoked in the Introduction, 
would generally include a third POVM element corresponding to 
the situation where no conclusive decision is returned on the state 
of the quantum system. Imposing a conclusive measurement usu-
ally exposes to detection errors. Except in the special case where 
the supports of ρ0 and ρ1 span orthogonal subspaces, the two 
quantum states in general cannot be perfectly distinguished, and 
any conclusive measurement for detection has to cope with some 
level of error. A relevant task is then to devise optimal strategies 
to minimize such errors.

The optimal detection strategies under various criteria are char-
acterized in [40,41,43,44]. In this section, we exploit and adapt the 
results of [40,41] for detection under minimum probability of de-
tection error. Several aspects of such quantum detection have been 
developed in different directions, for instance in [42,45,47,44,53,
46,54]. Here, we consider minimum probability-of-error detection 
in relation to stochastic resonance and enhancement by quantum 

noise, which is an original perspective. To obtain the overall prob-
ability of detection error, we have the conditional probability of 
each detection decision which is given by the operator trace [1]

Pr{Mk|ρ j} = tr(ρ jMk), j = 0,1, k = 0,1. (1)

The overall probability of detection error Per = Pr{M1|ρ0}P0 +
Pr{M0|ρ1}P1 then results as

Per = tr(ρ0M1)P0 + tr(ρ1M0)P1 (2)

= tr
[
ρ0M1 P0 + ρ1(1 − M1)P1

]
(3)

= P1 − tr
[
(P1ρ1 − P0ρ0)M1

]
(4)

since M0 = 1 − M1 and the ρ j ’s are with unit trace. From Eq. (4), 
the probability of detection error can also be expressed as

Per = P1 − tr(TM1), (5)

with the test operator

T = P1ρ1 − P0ρ0, (6)

which is Hermitian but not generally a density operator since T is 
not positive in general.

We then seek the optimal POVM {M0 = 1 − M1, M1} that mini-
mizes the probability of detection error Per from Eq. (5). This is 
achieved by finding the POVM element M1 that maximizes the 
term tr(TM1) in the right-hand side of Eq. (5). To characterize this 
optimal POVM element, the spectral decomposition of the test op-
erator T is introduced as

T =
N∑

n=1

λn|λn〉〈λn|, (7)

with the eigenvectors {|λn〉} of the Hermitian operator T forming 
an orthonormal basis. One then gets

tr(TM1) =
N∑

n=1

λn tr
(|λn〉〈λn|M1

) =
N∑

n=1

λn〈λn|M1|λn〉. (8)

Each scalar 〈λn|M1|λn〉 in Eq. (8) is a real confined between 0
and 1, since M1 is a positive operator verifying 0 ≤ M1 ≤ 1. For 
each n, the maximum value of 1 is reached by 〈λn|M1|λn〉 when 
M1 is the projector |λn〉〈λn| on the eigensubspace spanned by |λn〉. 
The POVM element M1 maximizing the sum in the right-hand 
side of Eq. (8) is thus realized by summing the rank-one projec-
tors |λn〉〈λn| for all the eigenvectors |λn〉 associated with a positive 
eigenvalue λn , i.e.

Mopt
1 =

∑
λn>0

|λn〉〈λn|, (9)

achieving for tr(TM1) in Eq. (8) the maximum 
∑

λn>0 λn . The opti-

mal POVM element Mopt
1 defined by Eq. (9) is thus the projector on 

the subspace spanned by the eigenvectors |λn〉 associated with all 
the positive eigenvalues λn of the test operator T. The complemen-
tary element Mopt

0 = 1 − Mopt
1 is the projector on the orthogonal 

subspace.
The optimal POVM defined by Eq. (9) achieves in Eq. (5) the 

minimal probability of error

P min
er = P1 −

∑
λn>0

λn, (10)

which subtracts from the prior P1 all the positive eigenvalues 
of the test operator T. Since the eigenvalues λn sum to tr(T) =
P1 − P0, one has equivalently P min

er = P0 +∑
λn<0 λn summing over 
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