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We develop a class of neural networks derived from probabilistic models posed in the form of Bayesian 
networks. Making biologically and technically plausible assumptions about the nature of the probabilistic 
models to be represented in the networks, we derive neural networks exhibiting standard dynamics 
that require no training to determine the synaptic weights, that perform accurate calculation of the 
mean values of the relevant random variables, that can pool multiple sources of evidence, and that deal 
appropriately with ambivalent, inconsistent, or contradictory evidence.

© 2014 Published by Elsevier B.V.

1. Introduction

Artificial neural networks are noted for their ability to learn 
functional relationships from observed data. Unfortunately, a 
trained neural network is typically a black box, so that it can 
be quite difficult to determine what function is actually repre-
sented by the network. In numerous cases, neural networks have 
been related to probabilistic models, with either the trained net-
work retrospectively given a probabilistic interpretation or the 
training process itself explicitly based on a probabilistic strategy. 
Alternatively, a constructive approach can be taken to exploring 
representation of probabilistic models in neural networks, encod-
ing pre-specified probabilistic models into network weights. The 
key challenge of such an approach is to produce reasonable neural 
networks, allowing a suitably broad class of probabilistic models to 
be encoded into neural networks with recognizable architectures 
and dynamics. Towards this end, we formulate and characterize an 
encoding method that handles a restricted class of probabilistic 
models and allows calculation, without training, of neural net-
works that accurately process the mean values of the relevant 
random variables with the usual neural activation of a weighted 
sum of the neural inputs transformed with a nonlinear activation 
function.

Constructive or “top-down” approaches to artificial and natural 
neural information processing receive impetus from current con-
ceptual thrusts in theoretical neurobiology. Specifically, it has been 

proposed [1] that cortical circuits (as neural populations) perform 
Bayesian statistical inference, encoding and processing information 
about pertinent analog variables in terms of their probability den-
sities (PDs). This hypothesis supports a theoretical framework for 
understanding diverse results of neurobiological experiments, and 
a practical framework for the design of recurrent neural network 
models that implement a broad variety of information-processing 
functions [2–4].

Probabilistic formulations of neural information processing have 
been explored along a number of avenues since the strong resur-
gence of research in artificial neural networks in the 1980s and 
the parallel genesis of computational neuroscience. Early devel-
opments focused on the prospects of “stochastic machines” [5], 
notably Boltzmann machines [6], sigmoid belief networks [7], and 
Helmholtz machines [8]. These networks are composed of stochas-
tic processing units that occupy one of two possible states in a 
probabilistic manner. Learning rules for stochastic machines enable 
such systems to model the underlying probability distribution of a 
given data set.

A seminal analysis by Anderson and Abrahams [9] in 1987 
presaged the introduction of Bayesian probability theory into the 
formal description of neural information processing, by demon-
strating that the original Hopfield neural network implements, in 
effect, Bayesian inference on analog quantities in terms of PDs (see 
also [10]).
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As in the present work, which stems from that of Refs. [2,11,
3,4], Zemel, Dayan, and Pouget [12] have investigated population 
coding of probability distributions, but with different representa-
tions and dynamics than those we consider here. Several exten-
sions [13] of the Bayesian probabilistic framework envisioned by 
these authors have been developed that feature information prop-
agation between interacting neural populations. (See also [14]; for 
pertinent reviews see [15] and especially [16].)

The connection between neural networks and probabilistic 
models represented specifically as Bayesian networks [17,18] has 
been explored along two main directions. In one approach, the 
neural network architecture and activation dynamics are specified, 
and a learning rule is applied that endeavors to capture the appro-
priate Bayesian network in the synaptic weights based on observed 
patterns [7,19,20].

In the second approach, a prescribed Bayesian network is trans-
formed into a neural network using an encoding process formu-
lated in terms of probability densities of analog variables [2,11]. 
While specific Bayesian networks are readily captured in this ap-
proach, the neural architecture and neuronal dynamics that arise 
from the encoding need not match those of traditional models. 
In particular, instead of the usual weighted sum of neural acti-
vation values passed through a nonlinear activation function, the 
encoding process can produce neural networks that involve multi-
plicative interactions between neural activities. Even so, the mod-
ular nature of cortical processing [21–23] is well suited to such a 
strategy, in which cortical areas are taken to collectively represent 
the joint probability density over several variables. These neural 
“problem-solving modules” can be mapped in a relatively direct 
fashion onto the nodes of a Bayesian belief network, giving rise 
to a class of neural network models that have been termed neural 
belief networks [2,11].

In contrast, studies of Eliasmith and Anderson based on popula-
tion-temporal coding [3,4] provide strong evidence that the mod-
eling of low-level sensory processing and output motor control do 
not require such a sophisticated representation: for these func-
tions, manipulation of mean values instead of full PDs is generally 
sufficient. Further, the representations can be simplified to deal 
with vector spaces describing the mean values instead of function 
spaces describing the PDs.

In the present work, we develop neural networks processing 
mean values of analog variables as a specialized form of the more 
general neural belief networks. We begin with a brief summary 
of the relevant properties of Bayesian networks in Section 2. We 
describe a procedure for generating and evaluating the neural net-
works in Section 3, and apply this procedure to salient examples 
in Section 4.

2. Bayesian networks

Bayesian networks, or Bayesian belief nets [17,18], are directed 
acyclic graphs that represent probabilistic models. Fig. 1 provides 
an illustrative example. Each node represents a random variable, 
while the arcs signify the presence of dependence between the 
linked variables. The strengths of these influences are defined us-
ing conditional probabilities. We additionally take the direction of 
a given link to indicate the direction of causality (or, more simply, 
relevance), with an arc pointing from cause to effect; in this form, 
the Bayesian network is also called a causal network.

Multiple sources of evidence about the random variables are 
conveniently handled using Bayesian networks. The belief, or de-
gree of confidence, in particular values of the random variables is 
determined as the likelihood of the value given evidentially sup-
port provided to the network. There are two types of support that 
arise from the evidence: predictive support, which propagates from 
cause to effect along the direction of the arc, and retrospective 

Fig. 1. A Bayesian network. Evidence about any of the random variables influences 
the likelihood of the remaining random variables. In a straightforward terminology, 
the node at the tail of an arrow is a parent of the child node at the head of the 
arrow, e.g., X4 is a parent of X5 and a child of both X2 and X3. From the structure 
of the graph, we can see the conditional independence relations in the probabilistic 
model. For example, X5 is independent of X1 and X2, given X3 and X4.

support, which propagates from effect to cause, opposite to the 
direction of the arc.

Bayesian networks have two properties that we will find very 
useful, both of which stem from the dependence relations shown 
by the graph structure. First, the value of a node X is not depen-
dent upon all of the other graph nodes. Rather, it depends only on 
a subset of the nodes, called a Markov blanket of X , which sepa-
rates node X from all the other nodes in the graph. The Markov 
blanket of interest to us is readily determined from the graph 
structure. It is comprised of the union of the direct parents of X , 
the direct successors of X , and all direct parents of the direct suc-
cessors of X . The second property is that the joint probability over 
the random variables xμ is decomposable as

P (x1, x2, . . . , xn) =
n∏

μ=1

P
(
xμ

∣∣ Pa(xμ)
)
, (1)

where Pa(xμ) denotes the (possibly empty) set of direct-parent 
nodes of Xμ . This decomposition stems from repeated application 
of Bayes’ rule and from the structure of the graph.

3. Neural network model

We will develop neural networks from the set of marginal dis-
tributions {ρ(xμ; t)} so as to best match a desired probabilistic 
model ρ(x1, x2, . . . , xD) over the set of random variables xμ , which 
are organized as a Bayesian network. One or more of these vari-
ables must be specified as evidence in the Bayesian network. To 
facilitate the development of general update rules, we do not dis-
tinguish between evidence and non-evidence nodes in our nota-
tion.

Our general approach will be to minimize the difference be-
tween a probabilistic model ρ(x1, x2, . . . , xD) and an estimate of 
the probabilistic model ρ̂(x1, x2, . . . , xD). For the estimate, we uti-
lize

ρ̂(x1, x2, . . . , xD) =
D∏

α=1

ρ(xα; t). (2)

This is a so-called naive estimate, wherein the random variables 
are assumed to be independent. In principle, one may systemati-
cally improve upon this estimate by including successively higher-
order correlations in an exact product decomposition of the den-
sity ρ(x1, x2, . . . , xD), as in Ref. [10], at the expense of introducing 
multiplicative interactions between neurons.

Further constraints are placed on the probabilistic model and 
representation so as to produce neural networks with the desired 
dynamics. The first assumption we make is that the populations 
of neurons only need to accurately encode the mean values of the 
random variables, rather than the complete densities. We take the 
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