
JID:PLA AID:22665 /SCO Doctopic: Plasma and fluid physics [m5G; v 1.134; Prn:10/06/2014; 17:42] P.1 (1-5)

Physics Letters A ••• (••••) •••–•••

Contents lists available at ScienceDirect

Physics Letters A

www.elsevier.com/locate/pla

1 67

2 68

3 69

4 70

5 71

6 72

7 73

8 74

9 75

10 76

11 77

12 78

13 79

14 80

15 81

16 82

17 83

18 84

19 85

20 86

21 87

22 88

23 89

24 90

25 91

26 92

27 93

28 94

29 95

30 96

31 97

32 98

33 99

34 100

35 101

36 102

37 103

38 104

39 105

40 106

41 107

42 108

43 109

44 110

45 111

46 112

47 113

48 114

49 115

50 116

51 117

52 118

53 119

54 120

55 121

56 122

57 123

58 124

59 125

60 126

61 127

62 128

63 129

64 130

65 131

66 132

Polarization bremsstrahlung process in quantum plasmas including 

electron-exchange and shielding effects

Young-Dae Jung ∗

Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180-3590, USA
Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 426-791, South Korea

a r t i c l e i n f o a b s t r a c t

Article history:
Received 12 February 2014
Received in revised form 1 June 2014
Accepted 4 June 2014
Available online xxxx
Communicated by F. Porcelli

Keywords:
Polarization bremsstrahlung process
Electron-exchange
Quantum shielding

The electron-exchange and quantum shielding effects on the polarization bremsstrahlung spectrum due to 
the electron-shielding sphere encounters are investigated in quantum plasmas. From this work, it is found 
that the electron-exchange effect strongly suppresses the polarization bremsstrahlung radiation cross 
section. Additionally, it is found that the polarization bremsstrahlung radiation cross section increases 
with increasing plasmon energy and, however, decreases with increasing Fermi energy. The variation of 
the influence of electron-exchange and quantum shielding on the polarization bremsstrahlung spectrum 
is also discussed.

© 2014 Published by Elsevier B.V.

The continuum radiation spectra due to the bremsstrahlung 
process [1–13] have been widely used as the main plasma diag-
nostic process since the continuum UV and X-ray emissions caused 
by the projectile–target encounters has provided useful informa-
tion on various plasma parameters in astrophysical and laboratory 
plasmas. It has been known that the bremsstrahlung mechanism 
would be mainly classified as the ordinary bremsstrahlung radia-
tion known as the static electron–ion bremsstrahlung process and 
the polarization bremsstrahlung radiation caused by the interac-
tion between the projectile electron and the polarized target sys-
tem [13]. The conventional electron–ion bremsstrahlung radiation 
process has been extensively investigated in various plasma states 
by using the screened interaction potentials so-called the Debye–
Hückel model for weakly coupled plasmas and the ion-sphere 
model for strongly coupled plasmas [14]. Recently, aside from the 
conventional electron–ion bremsstrahlung process, the polariza-
tion bremsstrahlung process caused by the interaction between the 
plasma particle and polarized shielding sphere in plasmas has been 
extensively investigated since the polarization bremsstrahlung can 
generate the continuum radiation spectrum in wide spatial radia-
tion domains [11,13,15]. It would be then expected that the low-
energy projectile would be more actively involved in the polariza-
tion bremsstrahlung process since the polarization bremsstrahlung 
radiation is known to be produced by the electron-polarized target 
encounter. Recent years, there has been of a considerable inter-
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est in investigating and also searching unique physical character-
istics and properties of low-temperature and high-density quan-
tum plasmas since the quantum plasmas have been found in var-
ious nano-scale objects in modern sciences and technologies such 
as nano-wires, quantum dot, semiconductor devices, and also 
laser produced dense plasmas [16–28]. In these dense quantum 
plasmas, as we can expect, the screened interaction potential 
would be quite different from the ordinary Debye–Hückel model 
in weakly coupled plasmas due to the nonideal multiparticle cor-
relation and quantum-mechanical characters such as the Bohm 
potential and quantum statistical pressure effects [20]. Very re-
cently, Shukla and Eliasson [27] have shown that the electron-
exchange effect caused by the electron 1/2-spin in degenerate 
quantum plasmas plays a crucial role in the formation of the elec-
tric potential and dielectric function. Hence, it has been shown that 
the screened interaction potential including the fermionic charac-
ter of plasma electrons in degenerate quantum plasmas is differ-
ent from the standard Thomas–Fermi screened interaction poten-
tial [27] in the form: V TF(r) ∝ e−ksr/r, where ks represents the 
Thomas–Fermi (TF) screening wave number. Hence, we can ex-
pect that the polarization bremsstrahlung emission due to the 
electron-polarized shielding sphere encounters including the in-
fluence of electron-exchange and quantum shielding in degener-
ate quantum plasmas would be different from that in conven-
tional quantum plasmas represented by the Thomas–Fermi screen-
ing length k−1

s . However, the polarization bremsstrahlung process 
including the electron-exchange and quantum shielding effects in 
degenerate quantum plasmas has not been investigated as yet. This 
polarization bremsstrahlung process would be completely different 
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from the ordinary electron–electron bremsstrahlung radiation since 
the nonrelativistic electron–electron bremsstrahlung process can-
not produce the dipole radiation since the electron–electron two 
body system has zero dipole moment [12]. On the other hand, the 
electron polarization bremsstrahlung radiation has been known to 
be caused by the polarization interaction between the projectile 
electron and Debye shielding sphere in plasmas. Thus, in this pa-
per we investigate the influence of electron-exchange and quantum 
shielding on the polarization bremsstrahlung radiation spectrum in 
degenerate quantum plasmas. In this work, the effective screened 
potential and the impact-parameter analysis [12] are applied to 
obtain the polarization bremsstrahlung radiation cross section as 
a function of the impact parameter, electron-exchange parameter, 
Fermi energy, photon energy, plasmon energy, and projectile en-
ergy. The variation of the electron-exchange and quantum shield-
ing effects on the polarization bremsstrahlung spectrum is also 
discussed.

For the low-energy bremsstrahlung process such as the con-
tinuum radiation in low-temperature plasmas, the differential 
bremsstrahlung cross section [12] dσbr for producing a photon of 
frequency between ω and ω + dω would be represented by the 
impact parameter method as follows:

dσbr =
∫

d2ρ dwω(ρ), (1)

where ρ is the impact parameter vector from the center of the 
target system and dwω(ρ) is the differential probability of emit-
ting a photon within frequency dω for a given impact parame-
ter ρ . For the instantaneous power emitted due to the electron–
target encounters, the probability of photon emission dwω(ρ) [=
(8πe2/3m2c3h̄)|Fω(ρ)|2dω/ω] can be obtained by the Larmor for-
mula [12,14], where h̄ is the rationalized Planck constant, e is the 
elementary electric charge, m is the electron mass, c is the speed 
of the light in vacuum, Fω(ρ) [= (2π)−1

∫ ∞
−∞ dtF(t)eiωt ] is the 

Fourier transform of the force F(t) acting on the projectile elec-
tron due to the polarized shielding sphere. The absolute value of 
the Fourier transform |Fω(ρ)| would be decomposed into the par-
allel F‖ω and perpendicular F⊥ω Fourier components with respect 
to the direction of the projectile velocity v such as∣∣Fω(ρ)

∣∣2 = ∣∣v̂(v̂ · Fω)
∣∣2 + ∣∣v̂ × (v̂ × Fω)

∣∣2

= ∣∣F‖ω(ρ)
∣∣2 + ∣∣F⊥ω(ρ)

∣∣2
, (2)

where v̂ (= v/v) is the unit velocity vector.
Very recently, Shukla and Eliasson (SE) [27] have obtained an 

extremely useful form of the effective electrostatic potential φSE(r)
[= (Ze/2π2) 

∫
d3keik·r/(k2εSE(k))] of an ion with change Ze in 

degenerate quantum plasmas using the Shukla–Eliasson plasma di-
electric function εSE(k) {= [1 + [(k2/k2

s ) + αk4/k4
s ]/[1 + (k2/k2

s ) +
αk4/k4

s ]]−1} including the influence of electron-exchange correc-
tion and quantum shielding with quasistationary density perturba-
tions when the plasmon energy E P (= h̄ωP ) is smaller or compa-
rable to the Fermi energy E F (= mv2

F /2), where ks [= ωp/(v2
F /3 +

v2
ex)

1/2] represents the inverse effective Thomas–Fermi screening 
length, ωP is the electron plasma frequency, v F is the electron 
Fermi velocity, vex is the electron-exchange velocity associated 
with the electron-exchange effect, and α [= h̄ω2

p/4m2(v2
F /3 +

v2
ex)

2] is the quantum recoil parameter. Using the effective electric 
potential model [27,28], the Shukla–Eliasson effective interaction 
potential V SE(r) between the projectile electron and target ion 
with nuclear charge Ze in degenerate quantum plasmas is then 
found to be

V SE(r,α) = − Ze2

2r

{[
1 + ξ(α)

]
exp

[−k+(α)r
]

+ [
1 − ξ(α)

]
exp

[−k−(α)r
]}

, (3)

where ξ(α) ≡ (1 − 4α)−1/2 and the effective inverse screening 
lengths k±(α) are given by k±(α) ≡ ks[1 ∓ (1 − 4α)1/2]1/2/(2α)1/2. 
It can be readily shown that, when the quantum recoil is quite 
small, i.e., in the limit α → 0, the Shukla–Eliasson effective in-
teraction potential V SE(r) turns out to be the standard Thomas–
Fermi screened Coulomb potential such as V SE(r) → V TF(r) =
−(Ze2/r)e−ksr since k+ → ks and k− → ∞ as α → 0. Using 
the Shukla–Eliasson effective interaction potential, the polarization 
force Fpol(r) acting on the projectile electron due to the polarized 
shielding sphere in degenerate quantum plasmas is then found 
to be

Fpol(r)

= −∇
[
− Ze2

r2

∫
r′≤r

d3r′ r′ 1

4πr2
s

1

2r

× (
(1 + ξ)e−k+r + (1 − ξ)e−k−r)]

= − Zk2+e2r

r4

{
(1 + ξ)

[
2

k3+
−

(
2

k3+
+ 2r

k2+
+ r2

k+
+ r3

2

)
e−k+r

]

+ (1 − ξ)

[
2

k3−
−

(
2

k3−
+ 2r

k2−
+ r2

k−
+ r3

2

)
e−k−r

]}
, (4)

since the electron number density ne(r′) within the shielding 
cloud which contains the ion with nuclear charge Ze and plasma 
electrons would be represented by ne(r) = (Z/4πr2

s )(1/2r)[(1 +
ξ)e−k+r + (1 − ξ)e−k−r] in quantum plasmas, where the position 
vector is given by r = vt +ρ with the condition v ·ρ = 0, the effec-
tive shielding distance is determined by rs = max{1/k+, 1/k−}, and 
“max” is the larger of 1/k+ and 1/k− . The scaled perpendicular 
Fourier coefficient F̄⊥ω [≡ −(π/2)(ρ̂ · Fω)(vaZ /Ze2)] and parallel 
Fourier coefficient F̄‖ω [≡ −(π/2)(v̂ · Fω)(vaZ /Ze2)] of the polar-
ization force would be then represented by

F̄⊥ω(ρ̄, k̄+, k̄−)

=
∞∫

0

dτ
ρ̄k̄2+ cos(ητ )

2r̄4

×
{
(1 + ξ)

[
2

k̄3+
−

(
2

k̄3+
+ 2r̄

k̄2+
+ r̄2

k̄+
+ r̄3

2

)
e−k̄+ r̄

]

+ (1 − ξ)

[
2

k̄3−
−

(
2

k̄3−
+ 2r̄

k̄2−
+ r̄2

k̄−
+ r̄3

2

)
e−k̄− r̄

]}
, (5)

F̄‖ω(ρ̄, k̄+, k̄−)

= i

∞∫
0

dτ
τ k̄2+ sin(ητ )

2r̄4

×
{
(1 + ξ)

[
2

k̄3+
−

(
2

k̄3+
+ 2r̄

k̄2+
+ r̄2

k̄+
+ r̄3

2

)
e−k̄+ r̄

]

+ (1 − ξ)

[
2

k̄3−
−

(
2

k̄3−
+ 2r̄

k̄2−
+ r̄2

k̄−
+ r̄3

2

)
e−k̄− r̄

]}
, (6)

where ρ̂ (= ρ/ρ) is the unit impact parameter vector, aZ (= a0/Z ) 
is the first Bohr radius of the hydrogenic ion with nuclear charge 
Ze, a0 (= h̄2/me2) is the first Bohr radius of the hydrogen atom, 
ρ̄ (≡ ρ/aZ ) is the scaled impact parameter, τ (≡ vt/aZ ) is the 
scaled time, η (≡ ωaZ ) is the characteristic bremsstrahlung emis-
sion parameter, r̄ (≡ r/aZ ) is the scaled distance, and k̄± (≡ k±aZ ) 
are the scaled screening lengths in quantum plasmas. Hence, the 
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