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We calculate conductance and polarization for the laterally asymmetric quantum point contact. We con-
sider both Rashba coupling and spin–orbit interaction induced by asymmetric lateral confinement, with-
out external magnetic field. We show that a conductance plateau may appear at 0.5G0 (G0 = 2e2/h), 
without Rashba coupling and lateral spin–orbit interaction. For a spin-polarized injected current, the lat-
eral spin–orbit interaction gives additional control of the conductance by varying the side gates potential. 
For unpolarized electrons, the spin polarization arises along all coordinate axes. There is a possibility of 
switching of spin polarization by the gates potential.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

A characteristic feature of the ballistic electron transport in 
quasi-one-dimensional structures is the appearance of a plateau at 
G = nG0, n = 1, 2, ... where G0 = 2e2/h, e is the electron charge, 
and h is the Planck constant. This well-known phenomenon is ex-
plained in the one-electron Landauer–Büttiker approach [1]. How-
ever, there is a structure of the conductance arising in a number 
of experiments which has no commonly accepted explanation. This 
applies both to the 0.7-structure that arises when the conductance 
of the symmetric channel is measured (see, for example, [2] and 
also [3] and other articles in this thematic journal issue), and to 
the characteristics of the conductance of the laterally asymmetric 
quantum point contact (LA QPC) [4–9]. Despite the lack of consen-
sus on the mechanism of 0.7-anomaly, it is generally accepted that 
many-electron effects are at the basis of this phenomenon. Never-
theless, as shown in [10], in experiments where due to technologi-
cal or other reasons the longitudinal symmetry of the nanocontact 
is broken, a conductance plateau of the one-electron nature may 
arise in the region that is characteristic for a true 0.7-structure.

To explain the conductance anomalies in the LA QPC, the spin 
polarization of tunneling electrons is often used now. This is 
largely due to the finding of the mentioned features at G ≈ 0.5G0
and such localization of the conductance plateau was recognized 
as the experimental evidence for the existence of the spin polariza-
tion of the current in the QPC generated by the lateral spin–orbit 
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coupling (LSOC) due to the lateral asymmetry of the confinement 
potential [6,9,13]. Despite the great attractiveness of the idea of 
creating a spin-polarized current by methods of nonmagnetic spin-
tronics [14], it should be noted that the experimental manifesta-
tion of the 0.5-structure is not direct evidence of the existence 
of spin polarization. The available theoretical studies on this topic 
are scarce and they often contain hypothetical statements (a very 
strong electron–electron interaction in [14]) or an incorrect ap-
proach (a non-Hermitian Rashba operator in [15]).

The use of the spin polarization model meets with some diffi-
culties in explaining the experimental results, such as the features 
of the conductance differing from the 0.5 one, the disappearance 
of the effect with the increase of the potential asymmetry, and the 
resonance shape of the observed features [4–6].

The objective of this paper is to study in detail the influence of 
the asymmetric lateral confinement potential of the QPC with as-
sociated spin–orbit interaction and Rashba interaction on both the 
conductance and spin polarization in the QPC. The results were ob-
tained within the Landauer–Büttiker approach by solving numer-
ically the Lippmann–Schwinger equation. The paper is organized 
as follows. In Section 2 we present the model and the calcula-
tion method of the spin-dependent conductance. In Section 3 we 
consider the conductance in the absence of spin–orbit interactions. 
The influence of spin–orbit interactions on the electron transport 
is investigated in Section 4. Section 5 contains a study of the spin 
polarization of the initially unpolarized electron current which in-
duced by the LSOC and Rashba effect. In contrast to [16], we con-
sider both magnetic and non-magnetic contacts. In conclusion, we 
briefly discuss the results and their possible application.
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2. Model and calculating method

We consider a quasi-one-dimensional electron system with a 
local Rashba interaction in the region |x| ≤ anv where a is the 
lattice constant, and the additional LSOC induced by the lateral 
asymmetry of the confinement side gates potential. We assume 
that our system is infinite in the x direction and is described by 
the tight-binding Hamiltonian

Ĥ = Ĥ0 + Ĥ R + Ĥso + V̂ (1)

where

Ĥ0 = ε

2∑
σ=1

+∞∑
n=−∞

M∑
m=1

Ĉ †
n,m,σ Ĉn,m,σ

− t
2∑

σ=1

+∞∑
n=−∞

[
M∑

m=1

(
Ĉ †

n+1,m,σ Ĉn,m,σ + H.c.
)

+
M−1∑
m=1

(
Ĉ †

n,m+1,σ Ĉn,m,σ + H.c.
)]

. (2)

Here Ĉ †
n,m,σ (Ĉn,m,σ ) are the creation (annihilation) operators at 

the site (n, m) with the spin state σ (σ = 1 corresponds to (1, 0)T

and σ = 2 corresponds to (0, 1)T ), and M is the number of trans-
verse atomic layers of the system along y. Energy ε is on-site en-
ergy and t > 0 is hopping integral between the nearest neighbors. 
The correct Hermitian form of the Rashba term in the continuous 
case is [17–19]

Ĥ R = α(x)(σ̂x p̂ y − σ̂y p̂x) + h̄

2
(iσ̂y)α

′(x) (3)

where p̂ = (̂px, ̂p y, 0) is the electron momentum, σ̂ = (σ̂x, ̂σy, ̂σz)

are the Pauli matrices and α(x) is a Rashba parameter. However, 
in the tight-binding approximation for the local Rashba interac-
tion, similar to the spatially homogeneous case, the expression 
Ĥ R = α(x)(σ̂x p̂ y − σ̂y p̂x) where α(x) is not equal to zero only 
in the region of spin–orbit interaction, is often used [15,16,22,23]. 
This operator is not Hermitian. We use in (1) the symmetrized Her-
mitian expression of the form

Ĥ R =
∑
σ ,σ ′

∑
n,m

[
tso(n + 1) + tso(n)

2

(
Ĉ †

n+1,m,σ (iσy)σ ′,σ Ĉn,m,σ ′

+ H.c.
) + tso(n)

(
Ĉ †

n,m+1,σ (iσx)σ ′,σ Ĉn,m,σ ′ ,+H.c.
)]

(4)

where

tso(n) =
{

h̄α/2a, |n| � nv − 1,

0, elsewhere.
(5)

Formula (4) comprises additional components, as compared with 
the expression obtained from the spatially uniform Rashba oper-
ator by replacing α with α(n). The inclusion of these terms is 
important to take into account the conservation of charge in the 
region |x| � anv , especially in the case where the spin–orbit in-
teraction affects a small number of lattice sites, or in studies of 
resonant states having, as known, small imaginary parts. The oper-
ator corresponding to the gates potential has the form

V̂ =
∑
σ

∑
n,m

V (n,m)̂C †
n,m,σ Ĉn,m,σ (6)

where

V (x, y) = V (s)(x, y; V g) + V (a)(x, y;�V ), (7)

Fig. 1. The potential of the LA QPC (�V = 0.75t/γ0).

V g specifies the magnitude of the contact barrier, and �V de-
scribes the potential difference of the side gates. The function 
V (s)(x, y; V g) is even in y; it coincides with the potential for the 
longitudinally symmetric case [10] having the form

V (s)(x, y; V g) = cV g
[
1 + cos(2πx/Lx)

]
+ d

[
U (+)(x, y) + U (−)(x, y)

]
(8)

where

U (±)(x, y) = 1

a2

(
y − Y±(x)

)2
Θ

[±(
y − Y±(x)

)]
,

Y±(x) = y0 ± L y

4

[
1 − cos(2πx/Lx)

]
. (9)

Here Θ(y) = 1 for y > 0 and Θ(y) = 0 otherwise, y0 = a(M +1)/2
is the coordinate of the middle layer, and the parameters Lx = 4a
and L y = (M − 1)a define the region where the potential does not 
vanish: |x| � Lx/2, |y − y0| � L y/2. As in [10], we put c = 4.165
and d = 0.45t . The asymmetric in y contribution to the gates po-
tential, by analogy with the field of the capacitor, is modeled by

V (a)(x, y;�V ) = γ

(
x

a

)
y − y0

a
�V , (10)

where

γ (n) =
{

γ0, |n| � nv ,

0, elsewhere.
(11)

The quantity γ0 depends on the contact material and the geometry 
of the electrodes. In contrast to the potential used in [15], we ob-
tain the symmetric case passing to the limit as �V → 0. The plot 
of the potential (7) for �V = 0.75t/γ0 is displayed in Fig. 1.

The lateral spin–orbit interaction is given by the Hermitian op-
erator [20,21]

Ĥso = βσ̂z
(

V ′
x(x, y)̂p y − V ′

y(x, y)̂px
)

(12)

where β is the intrinsic LSOC parameter. Within the difference ap-
proximation, the Hermitian operator corresponding to (12) has the 
form
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