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Detecting the charming topological phase has been an ongoing topic. In this work, we take the square
lattice as an example and try to detect the anomalous quantum Hall (AQH) phase under magnetic field.
We analyze the topological energy levels of the system, the quantum Hall effect and quantum valley Hall
effect, and the number of scattered electrons after a laser pulse, from which the unambiguous signals
to characterize the AQH phases can be obtained. Meanwhile the corresponding valley polarizations of

electrons are investigated. Our study opens new perspectives for the applications of valleytronics in the
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1. Introduction

Topological phases of matter which have been an interesting
topic in condensed matter in recent years [1,2] are characterized
by the gapless edge states and quantized charge transport. Due
to their novel properties, the topological phases exhibit potential
applications in the spintronics [3]| and valleytronics [4] which aim
at controlling the spin and valley degree of freedom of electrons
for future use as data storage and transmission in semiconductor.

The study of topological phase originates from the understand-
ing of the integer quantum Hall effect (IQHE) in which the mag-
netic field breaks the time reversal symmetry (TRS) of the sys-
tem. In Haldane’s seminal paper [5], the periodic magnetic flux on
the honeycomb lattice is introduced which vanishes in a plaque-
tte to break the TRS, therefore the anomalous quantum Hall effect
(AQHE) appears without the Landau levels (LLs). Besides that, the
AQHE can be realized in the spinless two-dimensional (2D) square
lattice when certain conditions are satisfied [6,7]. The essence is
to endow nonequivalent masses to electrons in different valleys
which opens the excitonic gap and breaks the valley symmetry.

When an external magnetic field is applied on the two-
dimensional electron gas (2DEG), it will split the original contin-
uous Bloch bands into discrete Landau levels (LLs), which results
in the Hofstader butterfly spectrum [8]. The Hall conductance is
quantized when the Landau subbands below the Fermi surface
are filled. Haldane first proved the existence of AQHE in the limit
of vanishingly small magnetic field with the Streda formula [5].

* Corresponding author.

http://dx.doi.org/10.1016/j.physleta.2014.05.012
0375-9601/© 2014 Elsevier B.V. All rights reserved.

In this work, we try to detect the AQH phase under magnetic
field and take the square lattice as an example. The square lat-
tice can also support the existence of Weyl semimetal [9,10] and
2m-flux topological semimetal in different parameter ranges. In
these different quantum states, a novel symmetry called the hid-
den symmetry is proposed which corresponds to the antiunitary
composite operation [11].

In experiment, the cold atom technique opens the path to sim-
ulate the topological phases with precisely controlled parameters
[12]. The synthetic magnetic field [13] and spin-orbit coupling
(SOC) [14] have been realized in cold atoms with suitably arranged
lasers, especially the recent progresses in realizing the extremely
strong magnetic flux which can be of (0.1 ~ 1)% in a unit cell

with Raman-assisted lasers [15-17] where ’El is the elementary flux
quantum. In terms of these developments, an important issue is to
identify the observables which can provide evident signatures of
the topological phases [7,18]. In simulating the AQH phase with
the cold atom, the square lattice model is more feasible than Hal-
dane’s honeycomb lattice model [6,19] as the periodic magnetic
flux plays a minor role in square lattice. With a well-designed laser
field probe, the chiral edge states with specific property in the Hof-
stadter optical lattice can be captured by the Bragg spectra that is
sensitive to angular momentum [20].

Here we provide a detailed account on three striking manifesta-
tions of the interplay between the AQH phase in square lattice and
the magnetic field, which can be used to detect the AQH phase.
First we analyze the topological structure of energy bands and LLs
in the system when the magnetic field is absent or present. The
wavefunctions of the bands at the Dirac points and the chiralities
of n =0 LLs in both valleys are different in topologically trivial
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Fig. 1. (Color online.) (a) Schematic plot of 2D square lattice which consists of two
sublattice A (red) and B (blue). The darker and lighter plaquettes represent the
staggered magnetic flux while the solid and dashed lines are for the anisotropy
NNN hoppings. The arrows denote the phase gauge that we choose to represent
the staggered magnetic flux. (b) The phase diagram in parametric space (M, t; —t})
where the Chern number is shown. The red dashed (blue dotted) line marks the
sign inversion of my (m_).

and nontrivial phases. Next we study the quantum Hall response
of the system as well as the quantum valley Hall effect (QVHE)
[4,21], where the Dirac fermions in different valleys flow to oppo-
site transverse edges when an in-plane electric field is applied. The
Hall conductance and valley Hall conductance at the charge neu-
tral point (CNP) can characterize the different topological phases.
After the application of a short laser pulse, we investigate the ex-
cited electron number and the accompanied valley polarization.
From the change of the number of scattered electrons, the dif-
ferent topological phases can be further identified. Our work may
provide new perspectives to control the AQH phase and the valley-
polarized electrons with the help of magnetic field, which are of
particular interests for valleytronics [22] in the future.

2. Model

We start from the square lattice which consists of two sub-
lattices A and B and the staggered magnetic flux in neighboring
plaquettes as shown in Fig. 1(a). The square lattice has a lattice
spacing a. When a uniform magnetic field is applied on the sys-
tem along z-axis B = Be;, it will cause the hopping integrals to
acquire the Peierls phase, which can be encoded by the minimum
substitution to the momentum p — p + eA where A is the vec-
tor potential. Thus any hopping process from site r; to r; acquires
the phase factor e/, in which ¢;; = 2m ¢ frrif A-dr. We can express

the magnetic field as B = ﬁg and the dimensionless quantity ¢

is in unit of g which gives the magnetic flux penetrating a unit cell
whose area is 2a%. For convenience, we take ¢ = % where p is an
integer so that the magnetic flux is commensurate with the lattice
structure [23]. In the frame of second-quantization, the relevant
tight-binding Hamiltonian under magnetic field takes the form:

Ho=M (afa; —b;'b;) —t1 Y (e %afh; +Hc)
i (i.J)
— Zti,je"‘f"’i (affl] +Bi+l;j), (1)
i)

where fl,‘(a?—) and Bi(lA);r) are the annihilation (creation) operators
on site R; in sublattice A and B, respectively. The staggered onsite
energy M on different sublattice breaks the inversion symmetry.
t1 is the isotropy nearest-neighbor (NN) hopping integral and t;;
is the anisotropy next-nearest-neighbor (NNN) hopping integral,
which takes t, in one direction (solid diagonal lines in Fig. 1(a))
and t} in the perpendicular direction (dashed diagonal lines). ¢;;
is the Peierls phase from site i to its NN j which takes ¢ for

the hopping direction along the arrows in the figure. Here we do
not consider the spin and neglect the Zeeman effect. Note that
although the staggered magnetic flux ¢ does not break the macro-
scopic TRS of the system [24], it plays an essential role in forming
the isotropic Dirac cones and therefore is taken to be %. The two-
sublattice square lattice resembles the heavy-fermion system [25]
and the d +id model in high-temperature superconductors [26,27].
A little simplified model was ever used to study the redistribution
of Chern numbers which associates with the LL movements [28].

3. Main results
3.1. Band structures and LLs

First we analyze the topological structure of the system. When
the magnetic field is absent, we can expand Hg around two un-
. . . e i
equivalent Dirac points K= ﬁa(l’ 0) and K' = 75 (0,1) to get the
low-energy Hamiltonians of Dirac-type:

A

Hy =Vvp(pxox — pyoy) + Moz, (2)
A = Vp(pyOx — PxOy) +M_0;. (3)
The Pauli matrices o; (i =x, y, z) act on the sublattice space. vp =

2‘/—% is the Fermi velocity and my—+ = M + 2a(t2 — t}) give the
electron mass in valley « in which the valley index o = +1(—1)
for the Dirac point K (K’). Here the staggered onsite energy and
the anisotropy NNN hoppings break the valley symmetry which
make the valley-polarized electron possible.

In spinless system, the topological phase can be characterized
by the Chern number which is the integration of the Berry curva-
o
h= Tll:\ is the unit Hamiltonian vector. Due to the different combi-

i =L [dkh -h
ture in the momentum space as C = z- fdkakx X h, where

nations of the momentum and Pauli matrix in I:IJr and A_, their
Chern number components have different signs so that the total
Chern number is C = %[sgn(m+) — sgn(m_)] [6]. The phase dia-
gram of Chern number is shown in Fig. 1(b), in which the red
dashed (blue dotted) line marks the sign inversion of my (m_).
The inversion of the electron mass plays a decisive role in the
phase transition and can drive the formation of topologically pro-
tected edge modes. When |M| < |2(t2 —t})|, my and m_ take op-
posite signs, so the Chern number is nonvanishing and the system
lies in the nontrivial AQH phase. When |[M| > |2(t; — t/2)|, my and
m_ take the same sign, so the Chern number vanishes and the sys-
tem lies in the normal band insulator (BI) phase. In the following,
we assume t’2 = —t5. In addition, we take t; and % as the unit of
energy and time, respectively.

In Eqgs. (2) and (3), the low-energy bands around the Dirac
points can be obtained directly as:

/ 1
E* (k) =s,/m2 + Ehzvik{ (4)

where s = 4+ (—) means the hole (electron) component. At the
Dirac points, the coupling between two sublattices vanishes so that
the wavefunctions are also the eigenstates of o, and will be local-
ized at sublattice A or B, with the corresponding eigenenergy E 4
or Ep. For a given valley, the gap at the Dirac point is:

Ay =Ep — Egp =2my,. (5)

From Eq. (5), we can see that the competition between the stag-
gered onsite energy and anisotropy NNN hopping integrals deter-
mines the properties of the wavefunctions at the Dirac points.

In Fig. 2 with the parameters chosen corresponding to the
points I and II in Fig. 1(b), the parabolic band structures of the
system in both valleys are plot. We can see that in the BI phase,
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