
Physics Letters A 378 (2014) 1085–1090

Contents lists available at ScienceDirect

Physics Letters A

www.elsevier.com/locate/pla

Formations of n-order two-soliton bound states in Bose–Einstein
condensates with spatiotemporally modulated nonlinearities

Jun-Rong He, Lin Yi ∗

Department of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 28 November 2013
Received in revised form 19 January 2014
Accepted 28 January 2014
Available online 18 February 2014
Communicated by A.R. Bishop

Keywords:
Two-soliton bound state
Harmonic potential
Bose–Einstein condensate

The formations of n-order two-soliton bound states (TSBSs) in the Bose–Einstein condensates with
spatiotemporally modulated nonlinearities are studied. Exact analytical expressions of the n-order TSBSs
are derived by means of the similarity transformations. Further, the numerical simulations are carried
out, consistent with the analytical results very well. The stability analysis shows that the solutions can be
stable. Our results indicate that the attractive spatiotemporal inhomogeneous nonlinearities can support
n-order TSBSs, which has the potential applications to the generation of matter-wave bright solitons in
harmonic traps.
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1. Introduction

The nonlinear Schrödinger equation (NLSE) has been studied in
a diversity of situations. It appears in many branches of physics,
including nonlinear optics [1–3], Bose–Einstein condensates (BECs)
[4,5], plasma physics [6], hydrodynamics [7], and some organic ma-
terials [8]. When the NLSE describes the dynamics of a BEC at zero
temperature by the mean-field theory, it often calls the Gross–
Pitaevskii equation (GPE) that elucidates the behavior of conden-
sate’s macroscopic wave-function [5,9]. Various types of solutions
to NLSE and GPE are found of great interest, such as bright (dark)
solitons [10–13], periodic traveling waves [14], and localized non-
linear waves [15].

In the last few years, many different types of nonlinear waves
have been studied theoretically, experimentally or numerically in
the context of BECs [16,17]. The study of inhomogeneous nonlin-
earities has led to the prediction of many remarkable nonlinear
phenomena either for time-dependent [18,19] or space-dependent
nonlinear coefficients [20]. Later researches have shown that the
spatiotemporal-dependent [15,21] nonlinearities can support ex-
plicitly exact solutions of the NLSE. In these situations, the nonlin-
earity can be controlled by means of the Feshbach-resonance (FR)
technique [22] through the s-wave scattering length in BECs and
can be achieved by the nonuniform distribution in nonlinear optics
[23]. Another particularly important scenario for solitons concerns
the NLSE in the case of one dimension with a harmonic potential.
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This potential is motivated by the purpose of trapping the system
in a finite region in space, and/or some time periodically oscil-
lating pattern related to the trapping frequencies in BECs. In this
situation, the NLSE has recently gained further importance, mainly
because of its direct application to the study of BECs [5,24,25] in
fibers and in photonic crystals and other periodic systems [1,19].
There are many methods that have been applied to solving the
above-mentioned physical models. It has been shown that the sim-
ilarity transformations [15,26] are the most useful and interesting
ways for dealing with the NLSE with varying coefficients.

On the other hand, as a type of complex soliton structure, the
soliton bound states (BSs) have attracted the theoretical and exper-
imental attention. In BEC applications, the soliton is monitored by
projecting the BS of ∼103 atoms into expulsive harmonic poten-
tial; then the soliton was observed propagating without changing
of the form for distances of order ∼1 mm [11]. In addition, it is
shown that during atomic collisions, the atoms can stick together
and form BSs in the form of molecules, which is important to
the occurrence of an FR [27]. By exploiting an FR to widely tune
the interactions between trapped ultracold lithium atoms, BSs can
also associate with Efimov trimers [28]. Moreover, the BSs can de-
scribe BEC Josephson junctions in optical lattices governed by the
GPE [29]. Beyond mean-field description of a dilute gas of bosonic
atoms, the BSs may be formed between the coherent condensate
and vapor components in the case of attraction between atoms of
coupled Hartree–Fock–Bogoliubov equations [30]. In nonlinear op-
tics, BSs (for the first time predicted in [31] in laser models) are
observed experimentally in a mode-locked fiber laser, and some of
them are characterized as being stable [32,33]. Numerical and ex-
perimental studies have confirmed that soliton BSs can exist in the
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amplified-damped fiber systems [34], isotropic Kerr materials [35]
and strongly birefringent fibers [36].

The recent papers suggest that BSs of an arbitrary number of
solitons can be supported when the harmonic potential is trapped
in a designed inhomogeneous nonlinearity [2,3,37,38]. A more spe-
cific result is that the two-soliton bound state (TSBSs) can exist
in BECs with time-modulated nonlinearity for harmonic potential,
both in time-independent and time-dependent trapping frequen-
cies [39,40]. Recently the TSBSs has also been found in a gen-
eralized nonautonomous cubic–quintic NLSE with distributed co-
efficients and time-dependent confining harmonic potentials [41].
Similar structures in optical fibers with a variable dispersion have
been found in Ref. [2]. Motivated by the above experimental and
theoretical investigations of BSs, in this paper we study the for-
mations of n-order TSBSs in harmonic traps with spatiotemporally
modulated nonlinearities. To do so, we make use of the similar-
ity transformations that connect problems with spatiotemporally
modulated nonlinearities with simpler ones that have a homo-
geneous nonlinearity. It is interesting that one obtains the exact
analytical expressions of TSBSs which has infinite numbers. We show
that the attractive spatiotemporal inhomogeneous nonlinearities
can support n-order TSBSs in harmonic traps. Numerical simula-
tions are calculated to verify the analytical results. In addition,
we provide some experimental parameters to produce these phe-
nomena that may be realized in future experiments. These are
interesting results with potential physical implications, such as the
formations of matter-wave bright solitons in BECs.

2. Theoretical model and solution method

In the present work, we consider a cigar-shaped BEC of a rel-
atively low density, when the energy of two-body interactions
is much less than the kinetic energy in the transverse direction
(N |as| � a⊥ , where N is a total number of atoms, as is the
s-wave scattering length, and a⊥ = √

h̄/mω⊥ is the linear oscillator
lengths in the transverse direction with ω⊥ being the transverse
trapping frequency). The macroscopic wave function of a quasi-
one-dimensional BEC can be written as the following dimension-
less form [15]

iψt = −ψxx + v(x, t)ψ + g(x, t)|ψ |2ψ. (1)

Here time t and coordinate x are measured in units 2/ω⊥ and a⊥ ,
respectively. The trapping potential we consider here is assumed
to be v(x, t) = −θ(t)2x2 with θ = |ω0|/ω⊥ � 1, where ω0 denotes
the axial-oscillation frequency. The nonlinear coefficient reads
g(x, t) = 4|as(x, t)|/aB (aB is the Bohr radius) controlled by the
FR, in which the scattering length as(x, t) is a space- and/or time-
modulated function of the varying magnetic field B(x, t). In real
experiments, the spatially dependent magnetic field may be gener-
ated by a microfabricated ferromagnetic structure integrated on an
atom chip [42]. A constant θ2 implies an oscillator potential which
can be confining or expulsive for θ2 < 0 or θ2 > 0, respectively.

Eq. (1) also finds the applications in nonlinear optics. In this
case, t and x, respectively, denote the propagation distance and
the retarded time, ψ(x, t) is the complex envelope of the electric
field, v(x, t) describes the contribution to the refractive index, and
g(x, t) represents the Kerr coefficient which can be achieved by the
nonuniform distribution in waveguide.

The normalized number of atoms reads

N =
∞∫

−∞
|ψ |2 dx, (2)

which is connected with N via the relation N = a⊥N/(2aB). In
terms of the optical-beam transmission, N is proportional to the

total power of the trapped light signal. The energy of Eq. (1) can
be written as

E =
∞∫

−∞

[∣∣∣∣∂ψ

∂x

∣∣∣∣
2

+ v(x, t)|ψ |2 + g(x, t)

2
|ψ |4

]
dx. (3)

By following the scheme proposed in Ref. [15], exact solutions
can be constructed by casting Eq. (1) into the form of a solvable
stationary NLSE

EΦ = −ΦX X + G|Φ|2Φ, (4)

which may be implemented by employing the following transfor-
mation:

ψ(x, t) = √
γ Z(ξ)eiϕ(x,t)Φ

[
X(x, t)

]
, (5)

where X(x, t) = ∫ ξ

−∞ Z [ξ ′(x, t)]−2 dξ ′ with ξ(x, t) = γ (t)x +
p

∫ t
0 γ (t)2 dt . The constant E is the corresponding eigenvalue

(which corresponds to the chemical potential in BEC and the prop-
agation constant in nonlinear optics), G determines the sign of
nonlinearity, and p controls the movement behavior of solution.
Time-dependent function γ (t) is the inverse of width of the local-
ized solution.

This transformation requires

g(x, t) = Gγ Z(ξ)−6, (6)

ϕ(x, t) = − γt

4γ
x2 − pγ

2
x +

(
1 − p2

4

) t∫
0

γ 2 dt. (7)

Defining χ(t) = 1/γ (t), one can find that χ(t) and Z(ξ),
respectively, satisfy the following Mathieu and Ermakov–Pinney
equations [43,44]

χtt − 4θ(t)2χ = 0, (8)

Zξξ − Z = E/Z 3. (9)

For Mathieu equation (8), the solutions may be found analyti-
cally, depending on the choice of θ . In particular, when θ = 0, the
potential is vanishing and χ(t) = α0t + β0, where α0 and β0 are
real constants. Note that, in this case, the soliton solutions can be
found analytically if constants α0 and β0 are chosen properly. Since
the main purpose of this work is to study the properties of some
special localized solution structures, i.e., formations of n-order TS-
BSs, we set θ 	= 0.

The solution of Ermakov–Pinney equation (9) can be con-
structed as

Z(ξ) =
√

Aφ2
1 + 2Bφ1φ2 + Cφ2

2 , (10)

where A, B and C are real constants satisfying E = (AC − B2)W 2,
and the constant Wronskian W = φ1φ2ξ − φ2φ1ξ with φ1(ξ) and
φ2(ξ) being two linearly independent solutions of φξξ − φ = 0. It
is easy to obtain that: φ1(ξ) = eξ and φ2(ξ) = e−ξ . Since φ1(0) =
φ1ξ (0) = φ2(0) = 1, and φ2ξ (0) = −1, the Wronskian is W = −2.

Next, we will show the formations of TSBSs in harmonic poten-
tials for some physical relevant choice of θ . To do this, we choose
p = 0 in the following discussions. With this, the phase given by
Eq. (7) has the quadratic nature.

3. Formations of n-order TSBSs in BECs for attractive
nonlinearity

Concerning the solutions of Eq. (4) for E = 0. In such a case,
a nontrivial exact solution is given by Φ(X) = λ/

√−G cn(λX −
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