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We compare the fluctuation relations for work and entropy in underdamped and overdamped systems,
when the friction coefficient of the medium is space-dependent. We find that these relations remain
unaffected in both cases. We have restricted ourselves to Stratonovich discretization scheme for the
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1. Introduction

The last couple of decades have observed a steadily growing in-
terest in the field of systems at mesoscopic scales, thanks to the
growing understanding of machines and engines with smaller di-
mensions. This has led to the area of stochastic thermodynamics
which provides a framework for extending notions of classical ther-
modynamics to small systems wherein concepts of work, heat, and
entropy are extended to the level of individual trajectories during
nonequilibrium processes (ensembles). Research in this area has
given birth to a group of exact and powerful theorems that dic-
tate the behavior of such systems. They are commonly referred to
as the fluctuation theorems (FTs) [1-17], and these theorems are
valid even far from equilibrium, a feat that is beyond the scope of
the well-established linear response theory. The theorems provide
stringent restrictions on the probabilities of phase space trajecto-
ries in which second law is transiently “violated”. They show that
at the level where fluctuations are comparable to the relevant en-
ergy exchanges of the system, one needs to replace the associated
quantities in the statement of the second law by their averages:
(W) > AF or (ASg:) >0 [9,13,14]. Here the angular brackets rep-
resent the ensemble average. Thus, they in essence uphold the
second law, even at the mesoscopic level, however, for the aver-
age properties.
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The Crooks Fluctuation theorem (CFT) for heat states that the
ratio of the probabilities of forward trajectory and the correspond-
ing reverse trajectory for given initial states is given by [15,16]

PIX[xol _ gpe (1)
P[X|xc]
Here, X is the short form of the phase space trajectory along the
forward process xg, X1, ...,X; generated by the protocol A(t). x;
represents the phase space point at time t;. X is the corresponding
reverse trajectory generated by the time reversed protocol A(t —t),
where 7 is the time of observation. xp is a given initial state of
the forward process. The reverse process begins from the state X,
which is the time-reversal of the final state x; of the forward pro-
cess.

Using CFT, several other theorems like the Jarzynski equality
and entropy production FT can be easily derived [15,16].

In this paper, we study the validity of these FTs in the presence
of coarse-graining, when we transform the underdamped Langevin
equation to the overdamped one, in the limit of high friction.
We find that a prominent difference in the analysis is observed
between the overdamped (coarse-grained) and the underdamped
systems, when the friction coefficient is space-dependent [18-21].
It should be noted that space-dependent friction does not alter
the equilibrium state. However, Langevin dynamics of the system
gets modified especially for the overdamped case. There are several
physical systems wherein friction is space-dependent (see [21] and
the references therein).
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2. Crooks theorem in presence of space-dependent friction

In the presence of space-dependent friction y (x), the equation
of motion of the underdamped system of mass m moving in a
time-dependent potential U (x, t) is given by

mv = —y v —U'(x,t) + /2y ®TE(®). ()

Note that the above equation contains multiplicative noise term.
Here, T is the temperature of the bath, while &(t) is the delta-
correlated Gaussian noise with zero mean: (£(t)) = 0; (£(t)E(t))) =
§(t —t’). The overhead dot denotes time-derivative, whereas prime
represents space derivative. Eq. (2) has been derived microscop-
ically by invoking system and bath coupling [19,20]. It is shown
that the high damping limit of Eq. (2) is not equivalent to ignor-
ing only inertial term [18-21]. The detailed treatment leads to an
extra term that is crucial for system to reach equilibrium state in
absence of time-dependent perturbations (see Eq. (19) below).

Roughly speaking, this happens in the overdamped case be-
cause the random forces &£(t) appear as delta-function pulses that
cause jumps in x. It then becomes unclear what value of x must
be provided in the argument of the function /2y (x)T, because the
value of the position at the time the delta-peak appears becomes
undefined [22]. It does not converge to a unique value even in the
limit of small time step At. In fact, we can plug in any value of
position in-between x(t) (position before the jump) and x(t + At)
(position after the jump). These different values of position lead to
different discretization schemes. The case is simpler in case of un-
derdamped Langevin equation. There, the jumps are caused in the
velocities, while the position is a much smoother variable (being
an integral over the velocities). In other words, it does not feel the
noise as delta peaks, but instead as a more well-behaved function.
In that case, in the limit of small At, the argument of g is given
by the unambiguous value x(t). Thus, in this case, an update in the
values of x and v will be unique in each time step.

Let us now check the validity of CFT in both the underdamped
and overdamped cases.

2.1. Underdamped case

At first we want to calculate the ratio of path probabilities be-
tween forward and reverse process. In a given process, let the evo-
lution of the system in phase space be denoted by the phase space
trajectory X(t) = {xo, x1,...,X¢}. Here, x, represents the phase
point at time t = t. In general, the phase point includes both the
position and the velocity coordinates of the system. In the over-
damped case, however, it would consist of the position coordinate
only. Now, a given path X(t), for a given initial point xg, would be
fully determined if the sequence of noise terms for the entire time
of observation is available (this happens because there is no un-
ambiguity in either the positions or the velocities, while updating
their values by using the underdamped Langevin equation, as dis-

cussed above): & = {&, &1,...,&7—1}. The probability distribution
of &, is given by
P (&) oce 8 42, (3)

Therefore, the probability of obtaining the sequence & will be
[12,23]

P[E®)] o<exp|:—%/$2(t)dti|. (4)
0

Now, from the probability P[£(t)] of the path &(t) in noise space,
we can obtain the probability P[X(t)|xg]. These two probability
functionals are related by the Jacobian |$ |. Thus, we can as well
write [12]

1 T
P[X(t)|x0]o<exp|:_5f$2(t)dt:|, (5)
0

where the proportionality constant is different from that in Eq. (4).
In Eq. (5), we then substitute the expression for &£(t) from the
Langevin equation (Eq. (2)):

P[X()]xo] o<exp|:—£—1/dt
0

(mv + U’(x, t)—i—)/(x)v) 6)
yx)T '

For the reverse process, v — —v, but the Jacobian is same. The ra-
tio of probability of the forward to the reverse path can be readily
shown to be [12,24]

PIX()|x0] _ expl— Jo dt v +U'(x,0) + y (x)v)? /4y (0 T]
PIX(®)|%:] exp[— fJ dt (mv + U’ (x,t) — y X)v)2/4y (0)T]

:exp|: /dt dmy (x)vv +4U’ (x, t)y(x)v:|
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0

= exp|:—/3/dt (mvv +U'(x, t)v):|
0

=ef2, (7)

where Q is the heat dissipated by the system into the bath, de-
fined as

Q s/{y(xw — 2y OTE® vt
0

——/{m\'/—l—U’(x,t)}vdt. (8)
0

This definition follow from the stochastic energetics developed by
Sekimoto [25,26] from the definition of first law using Langevin
dynamics. Eq. (7) is the celebrated CFT, from which several FT fol-
low.

2.2. Integral and detailed fluctuation theorems

We have,
P[X(t)|x
- [~( )|~O] =eﬁQ
PIX(®)]x<]
where Q is the heat dissipated, as obtained from the first law.
Multiplying by the ratio of the initial equilibrium distributions,

for forward and reverse processes, namely by po(xo)/p1(Xc),
we get [15]

(9)

PIX®)Ixolpo(x0) _ PIX] _ sq "% Z(0)
PIX(t)%1p1(x:)  P[X] Z(ho) e PEr
— eP(Q+AE=AF) _ B(W-AF) (10)

We have used the expression for equilibrium initial distribution

po(x0) = % and pi(x;) = za ) Here, AE = E; — Eg, and we

have made use of the relation Z = e~#F, between the partition
function and the free energy. Z(Ag) and Z(A;) are the partition
functions corresponding to the protocol values at the initial time
and the final time, respectively. In the final step, the first law for
the work done on the system, W = Q + AE, has been invoked.
The above relation can be readily converted to the Crooks work
theorem [16], given by
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