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Exact rogue wave solutions of the long wave–short wave resonance equation are obtained via Darboux
transformations. Compared to the real long-wave field which always features a single hump structure,
the short-wave field can be manifested as bright rogue wave, intermediate rogue wave, or dark rogue
wave, depending on the subtle nonlinearity driven by the long-wave field.
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1. Introduction

Rogue waves, which are originally coined for vivid description
of the mysterious and monstrous ocean waves [1], have recently
attracted much interest in their fundamental origin and complex
dynamics [2]. In addition to in the open ocean, these extreme wave
events are also observed in a wide class of physical systems in-
cluding deep water [3,4], capillary waves and surface ripples [5,6],
plasmas [7], optical fibers [8,9], and versatile lasers [10–13] (in-
cluding multistable systems [14,15]). These studies uncover gen-
eral features of nonlinearity and complexity shared by the rogue
waves. Basically, rogue waves are doubly localized wavepackets in
the sense that they seem to appear from nowhere and disappear
without a trace [16]. They in fact define the limit of either Ma
solitons [17] or Akhmediev breathers [18] which take an other-
wise exponential form. The Peregrine soliton [19] is the simplest
rogue wave pertinent to the nonlinear Schrödinger (NLS) equation,
and has recently been observed in deep water [3,4], plasmas [7],
and optical fibers [9]. In order to model the physical systems in
a relevant way, there is now a trend to study the rogue wave
phenomena beyond the NLS description. Recently, analytical rogue
wave solutions were also obtained for the more complicated phys-
ical models such as the Hirota equation [20], the Sasa–Satsuma
equation [21,22], the coupled Manakov system [23], the coupled
Hirota equations [24], and the three-wave resonance equation [25],
to name a few.
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In this Letter, we focus on the simple long wave–short wave
(LWSW) resonance equation [26,27] and manage to gain an insight
into the formation of the so-called dark rogue waves. This coupled
equation can be obtained from the Davey–Stewartson system [28]
under the resonance condition, namely, when the group velocity
of a short wave (high-frequency wave) is equal to the phase ve-
locity of a long wave (low-frequency wave). Despite the simplicity,
this equation can describe a variety of nonlinear wave phenomena
such as capillary–gravity waves in fluids [28] and optical–terahertz
waves in negative index media [29]. We note that the rogue wave
solutions to this equation had recently been derived by using the
Hirota bilinear method [30]. Our objective here is to establish
an alternative, more powerful Darboux transformation method for
such rogue wave solutions, and furthermore, to reveal an interest-
ing crossover dynamics ranging from bright rogue wave to dark
counterpart.

For our studies, we write the LWSW equation in dimensionless
form [26,27,29]

iut + 1

2
uxx + uφ = 0,

φt − (|u|2)x = 0, (1)

where u(t, x) represents the complex envelope of the rapidly vary-
ing field and φ(t, x) stands for the real low-frequency field, with t
and x the two independent evolution variables. In the following,
we exploit a Darboux dressing technique [31] to find the rogue
wave solutions of Eq. (1).

We note that Eq. (1) is integrable [27,28] and thus can be cast
into a 3 × 3 linear eigenvalue problem [31]
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Rx = UR, Rt = VR, (2)

where R = (r, s, w)T (T means a matrix transpose and r, s, and w
are (t, x, λ)-dependent functions), and

U = λU0 + U1, (3)

V = λ2V0 + λV1 + V2, (4)

with U0 = diag(2i,0,−2i), V0 = diag(−2i/3,4i/3,−2i/3), and

U1 =
( 0 u −iφ

0 0 −u∗
−2i 0 0

)
, V1 =

( 0 −u 0
0 0 −u∗
0 0 0

)
, (5)

V2 =
⎛
⎝ 0 i

2 ux − i
2 |u|2

−u∗ 0 i
2 u∗

x
0 u 0

⎞
⎠ . (6)

Here λ is the complex spectral parameter and R is a column-
matrix function of t , x, and λ, i.e., R ≡ R(t, x, λ). One can prove
that Eq. (1) can be exactly reproduced from the compatibility con-
dition Ut − Vx + UV − VU = 0.

By use of the dressing operator D as in Ref. [31], we obtain the
correct Darboux transformations

u = u0 + 2i(λ − λ∗)λ(α − β∗)
Δ

s∗w, (7)

φ = φ0 + 8(λ − λ∗)
Δ

[
α|λ|2|w|2 + iλ

(
α − β∗) Im

(
r∗w

)]
, (8)

where (u0, φ0) and (u, φ) denote the seeding pair and the new
pair of solutions of Eq. (1), respectively, and

α = −λ − λ∗

λ + λ∗ R(λ)†σ1R(λ) = −α∗, (9)

β = −R(λ)†σ1R(−λ), (10)

γ = −λ − λ∗

λ + λ∗ R(−λ)†σ1R(−λ) = −γ ∗, (11)

Δ = αγ − |β|2. (12)

Here σ1 is the 3 × 3 analogue of the first Pauli spin matrix [31]
and the dagger indicates the complex-conjugate transpose. Noting
that we have assumed s(λ) and w(λ) to be even functions of λ

and r(−λ) = r(λ) + 2λw(λ) [31]. Besides, one can find that α, β

and γ satisfy α + β = γ + β∗ and λ(α − β∗) + λ∗(α + β) = 0.
Since the rogue waves define the limit of either Ma solitons or

Akhmediev breathers on an unstable background [3,9,16], we start
directly with the plane-wave solutions

u0(t, x) = a exp(ikx − iωt), (13)

φ0(t, x) = b, (14)

where a > 0, b � 0, k ∈ R, and ω = 1
2 k2 − b. Then, substituting

Eqs. (13) and (14) into Eq. (2), we obtain

w(λ) = eiθ1 + Γ1eiθ2 + Γ2eiθ3 , (15)

s(λ) = f1u∗
0 w(λ), (16)

r(λ) = f2 w(λ), (17)

where Γ1 and Γ2 are arbitrary constants, and

θ j = μ j x + ν jt, (18)

ν j = 4

3
λ2 + b − 1

2
μ2

j , (19)

f1 = r11eiθ1 + Γ1r12eiθ2 + Γ2r13eiθ3

eiθ1 + Γ1eiθ2 + Γ2eiθ3
, (20)

f2 = r21eiθ1 + Γ1r22eiθ2 + Γ2r23eiθ3

eiθ1 + Γ1eiθ2 + Γ2eiθ3
, (21)

with

r1 j = i

μ j − k
, r2 j = −1

2
μ j − λ. (22)

The index j in Eqs. (18), (19), and (22) runs over 1, 2, and 3, and
μ j are three roots of the cubic equation

(μ − k)
(
μ2 − 2b − 4λ2) + 2a2 = 0. (23)

It is easily seen from Eqs. (18)–(23) that θ j(−λ) = θ j(λ), f1(−λ) =
f1(λ), and f2(−λ) = f2(λ) + 2λ, which gives rise to the symmetry
properties that r(λ), s(λ), and w(λ) should satisfy, see discussions
for Eqs. (7) and (8).

At this stage, one can obtain the Ma soliton or Akhmediev
breather solutions of Eq. (1) by substituting Eqs. (15)–(17) into
Eqs. (7) and (8), with an appropriate choice of the complex pa-
rameter λ. Specially, in the cubic equation (23), if a specific value
of λ is chosen such that

λ2 = 1

6
k2 − 1

2
b − 1

8

(
 + σ



)
∓ i

√
3

8

(
 − σ



)
, (24)

we then get two equal roots

μ1 = μ2 = κ = m + in, (25)

where m and n are the real and imaginary parts of the complex
constant κ , respectively, and are given by

m = 1

6

[
5k −

√
3
(
k2 +  + σ/

) ]
, (26)

n = ±√
(3m − k)(m − k). (27)

Noting that the plus or minus sign in Eq. (27) results from the pair
of conjugate values of λ2 [see Eq. (24)]. The other parameters σ , ρ ,
and  are defined by

σ = 1

9
k4 + 6a2k, (28)

ρ = 1

2
k6 − 1

54

(
27a2 + 5k3)2

, (29)

 =
{

−(ρ − √
ρ2 − σ 3)1/3, k � −3kn,

(−ρ + √
ρ2 − σ 3)1/3, −3kn < k � 3

2 kn,
(30)

with kn = (2a2)1/3. Note that the allowed regime of k is k � 3
2 kn ,

otherwise  and n will be complex, in conflict with the fact that m
and n should be real.

Under the circumstances, taking Γ1 = −1 and Γ2 = 0 can re-
duce Eqs. (20) and (21) to the simple rational forms

f1(λ) = i

κ − k
+ 1

(κ − k)2(κt − x)
, (31)

f2(λ) = −1

2
κ − λ − i

2(κt − x)
. (32)

As a result, from the Darboux transformations (7) and (8), we ob-
tain the exact fundamental rogue wave solutions

u(t, x) = u0

[
1 − it + ix

2m−k + 1
2(2m−k)(m−k)

(x − mt)2 + n2t2 + 1/(4n2)

]
, (33)

φ(t, x) = b + 2
n2t2 − (x − mt)2 + 1/(4n2)

[(x − mt)2 + n2t2 + 1/(4n2)]2
. (34)

Here the solutions have been translated along the x axis so that
their central values locate on the origin [22,24]. It is clear that the
short-wave rogue wave, u, is characterized by the second-order
polynomial of t and x, while the real long-wave rogue wave, φ,
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