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The dwell time of quantum tunneling has been derived by Steinberg (1995) [7] as a function of the
relation between transmission and reflection times τt and τr , weighted by the transmissivity and the
reflectivity. In this paper, we reexamine the dwell time using the extended probability approach. The
dwell time is calculated as the weighted average of three mutually exclusive events. We consider also
the scattering process due to a resonance potential in the long-time limit. The results show that the
dwell time can be expressed as the weighted sum of transmission, reflection and internal probabilities.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Quantum tunneling is one of the most important quantum phe-
nomena. Various tunneling times can be determined based on
characterizing the time spent by a particle under the barrier. They
are expressed in terms of the derivatives of the transmission co-
efficient T = |T |eiθt or the reflection coefficient R = |R|eiθr . For
example, the Larmor time was first introduced by Baz [1,2] in a
thought experiment designed to measure the time associated with
scattering events. The Larmor times for transmission and reflection
can be obtained respectively from

τ LM
t = −h̄

∂

∂V
θt and τ LM

r = −h̄
∂

∂V
θr, (1)

where V is the hight of a square potential barrier.
Another example is the Büttiker–Landauer time [3,4] that in-

vokes an oscillatory barrier to estimate the tunneling time. The
original static barrier is augmented by small oscillations in the
barrier height. The Büttiker–Landauer expressions for transmission
and reflection times are given as

τ BL
t = −h̄

∂

∂V
ln |T | and τ BL

r = −h̄
∂

∂V
ln |R|, (2)

respectively.
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Sokolovski and Baskin [5] presented an identity connecting the
dwell time τd(k) and the complex time τΩ

t(r) = τ LM
t(r) − iτ BL

t(r) as

τd(k) = |T |2τΩ
t + |R|2τΩ

r , (3)

where h̄2k2/2m is an energy of the free particle.
Hauge and Støvneng [6] also proved Eq. (3) and suggested that

the transmission and the reflection are mutually exclusive events.
Steinberg [7] used conditional probability to define the dwell time.
He proposed that the dwell time distribution consists of two parts,
one from transmission and another from reflection. In spite of
these results, we still do not know how the dwell time can be
decomposed. In 2004, Yamada [8] derived four tunneling times in
a unified manner without relying on any specific models by us-
ing the Gell-Mann and Hartle (GMH) decoherence functional [9]
D(γ )

GMH(τ , τ ′) to define the following quantity

I[F ] = 1

P (Θγ )

∫
dτ

∫
dτ ′ F

(
τ , τ ′)D(γ )

GMH

(
τ , τ ′). (4)

To understand the physical meaning of the quantity I[F ], it is nec-
essary to explore the relationship between D(γ )

GMH(τ , τ ′) and the
essential ideas of extended probability in quantum history [10–12].

In this paper, we discuss how the dwell time distribution is
determined by the extended probabilities of alternative histories,
which are decomposed into three elements. This formulation is
compared with the GMH decoherence functional. The natural oc-
currence of the dwell time is given by the weighted average of
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three mutually exclusive events. We introduce a dwell time τin as
the time for the particle to remain in a given region. Then we con-
sider the dwell time for a resonance potential barrier. This gives a
time τin that contributes to the dwell time in the long-time limit.
Finally, we present our conclusions in Section 4.

2. The conditional probability for the dwell time

From quantum theory [13], let us consider the statistics of mak-
ing a measurement as given by the projection operator |γ 〉〈γ |:

P (γ ) = tr
[|γ 〉〈γ |ρ0

]
, (5)

where P (γ ) is the probability of having the outcome γ and ρ0
is initially an arbitrary density matrix. The conventional statistics
of the histories are governed by a chain operator Cα for discrete
measurement

Cα = Pn
α(tn) · · · P1

α(t1) (6)

where Pk
α(tk) are projection operators corresponding to an event α

at time tk .
In most pictures of the quantum history, the statistics of his-

tories are governed by the chain operator representing a sequence
of events at various times. Griffiths [14] claimed that these history
approaches do not always define probabilities. The condition deter-
mining when probabilities can be defined is called the consistency
condition,

D
(
k,k′) = tr

[
K
(
k′)ρ0K†(k)

] = PGH(k)δk,k′ , (7)

where ρ0 is the initial density matrix of the system and D(k,k′) is
called the decoherence functional. Each history is described by the
chain operator K(k), k = 1,2, . . . , as

K(k) = Pk
f (t) · · · Pk

j(t j) · · · Pk
1(t0) (8)

where Pk
j(t j) is a projection operator corresponding to the event j

in the sequence of the history k at time t j and k = 1,2,3, . . . .
Gell-Mann and Hartle defined the probability of a history k as

PGH(k) = tr
[
K(k)ρ0K†(k)

]
. (9)

Griffiths used the consistency condition to show that sets of alter-
native histories may be assigned to the probabilities and showed
what these probabilities are. One example of this is the probability
of tunneling time. Yamada [15] argued that the quantum traver-
sal time defined by the clocked Schrödinger equation, does not
satisfy the weak decoherence condition. Therefore the definition
of the probability distribution of tunneling times is impossible. As
an alternative definition, Goldstein and Page [16] introduced the
probability distribution in the form of the expectation value of the
chain operator

π(k) = tr
[
ρ0K(k)

]
. (10)

Generally, Eq. (10) is negative. Therefore, they imposed the linear
positivity condition

π(k) � 0. (11)

A set of histories obeying the linear positivity condition will obey
the standard sum rules and gives a positive value. Now Hartle
[10,11] proposed that all histories, either fine-grained or coarse-
grained are definable in the extended probability form. The ex-
tended probability P (k) is given by

P (k) = Re
(
π(k)

)
. (12)

Fig. 1. Illustrating 3 mutually exclusive events of the Feynman path which contribute
to the dwell time. (a) Reflection paths, (b) transmission paths and (c) trapped paths.

Eq. (12) was also discussed in Refs. [17,18]. These probabilities are
not necessarily all positive nor less than one, but all the other
requirements of usual probability theories are maintained. How-
ever, the concept of the negative probability was mentioned in
Refs. [19,20]. Some authors have suggested that the probabilities
can be extended to complex numbers [21]. In this letter, we pur-
sue a complex joint probability.

Using the Feynman path integral approach, Sokolovski and
Baskin [5] calculated a traversal time using the functional

tcl
ab

[
x(t)

] =
t∫

0

dt′ Θab
(
x
(
t′)), (13)

where Θab(x) = 1 for a � x � b and 0 otherwise. Here we intro-
duce a matrix element of the chain operator in the functional form
to represent the quantum history of a particle that has been, for a
duration τ in a given region prior to time t ,

Cτ

[
x(t)

] = 〈
x
∣∣C(τ )

∣∣x′〉 =
∫

D[x]δ(τ − tcl
ab

[
x(t)

])
e

i
h̄ S[x(t)]. (14)

The Dirac δ function selects a class of paths that obeys condition
tcl
ab[x(t)] = τ . Integrating over all values τ , we can obtain the time

evolution operator as

U(t) =
∫

dτ C(τ ). (15)

Now we can classify a quantum trajectory of a particle, having
the value of tcl

ab[x(t)] exactly equal to τ according to three classes
as Fig. 1 suggests. The trajectories are decomposed by using the
end point of the paths.

To measure whether the particle is in the given region Ωγ , we
define the projection operator Pγ [x] in the form

Pγ [x] =
∫

dxΘγ (x)|x〉〈x|, γ = 1,2,3, (16)
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