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The classical Kitaev–Heisenberg model on the triangular lattice is investigated by simulation in its full 
parameter space together with the next-nearest neighboring Heisenberg interaction or the single-ion 
anisotropy. The variation of the system is demonstrated directly by the joint density of states (DOS) 
depending on energy and magnetization obtained from Wang–Landau algorithm. The Metropolis Monte 
Carlo simulation and the zero-temperature Glauber dynamics are performed to show the internal energy, 
the correlation functions and spin configurations at zero temperature. It is revealed that two types of 
DOS (U and inverse U) divide the whole parameter range into two main parts with antiferromagnetic 
and ferromagnetic features respectively. In the parameter range of U type DOS, the mixed frustration 
from the triangular geometry and the Kitaev interaction produces rich phases, which are influenced in 
different ways by the next-nearest neighboring Heisenberg interaction and the single-ion anisotropy.

© 2014 Published by Elsevier B.V.

1. Introduction

The spin–orbital coupling has been much highlighted in recent 
years due to its key role in the condensed matter physics, espe-
cially for the topological band insulators [1,2]. It is expected that 
the materials containing the heavy elements with large spin–orbit 
coupling may provide a fertile ground to search for topological 
insulators. Among them, the oxides group of transition metal Ir 
attracts considerable attention. In these compounds, the spin–orbit 
coupling and orbital degeneracy could make the exchange inter-
action highly anisotropic and frustrated, giving rise to realization 
of exotic spin models. In particular, the Kitaev–Heisenberg model 
has been proposed to capture the magnetic interactions in the 
honeycomb iridates [3–8]. Since the intrinsic spin–orbit coupling 
substantially modifies the effective spin Hamiltonian, the novel 
topological states are possible to arise in such systems, which has 
been another subject of intense interest [9,10].

Beyond the highlighted honeycomb lattice, other geometries, 
which could be built from edge-sharing IrO6 octahedra and thus 
also could host the Kitaev–Heisenberg physics, provide a rich play-
ground for exotic phenomena [5]. For example, Z2-vortex lattice 
has been observed in the ground state of the triangular Kitaev–
Heisenberg model [11]. Thus, the Kitaev–Heisenberg model on 
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other structures has become a new attraction recently. On the 
other hand, differently from the conventional Kitaev–Heisenberg 
model with the Kitaev interaction between the nearest neighbor-
ing spins on the honeycomb lattice, more recent investigations 
show that the Kitaev interaction can also appear between the next-
nearest neighboring spins [12,13]. Such a honeycomb lattice can 
be regarded as two interpenetrating triangular Kitaev–Heisenberg 
sublattices connected by the nearest neighboring bonds [11]. 
Therefore, the investigation on the triangular Kitaev–Heisenberg 
model will help to understand the honeycomb iridates.

In this Letter, Monte Carlo simulation is performed to inves-
tigate the Kitaev–Heisenberg model on the triangular lattice ex-
panded to its full parameter space. The character of the system is 
demonstrated directly by the density of states (DOS). Two types 
of DOS (U and inverse U (IU)) divide the whole parameter range 
into two main parts (U region and IU region) together with the 
transition regions between them. Rich phases at low temperature 
(T ) are observed in the U region, which are induced by the mixed 
frustration from the triangular geometry and the Kitaev interac-
tion. Moreover, the triangular Kitaev–Heisenberg model is further 
expanded to include more terms usual in materials. It is revealed 
that the next-nearest neighboring Heisenberg interaction has ef-
fect on the ranges of the U and IU regions and the correspond-
ing low-temperature (low-T ) phases. The single-ion anisotropy 
hardly influences these ranges, although it modifies the shape of 
DOS.
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Fig. 1. A sketch of the triangular lattice. The dashed, dotted-dashed and dotted links 
indicate the nearest neighboring spin-dependent bonds, where x, y and z involve 
Sx , S y , and Sz respectively. The solid thin line represents the next-nearest neigh-
boring bonds.

2. Model and simulation

In the triangular Kitaev–Heisenberg model, the exotic Kitaev in-
teraction brings an unconventional frustration into the triangular 
structure with the conventional geometric frustration, forming a 
mixed frustrated system. Note that one character of frustration is a 
high degeneracy of ground states and plenty of metastable states. 
Wang–Landau (WL) algorithm, which can avoid the system getting 
stuck in the metastable states and has a straightforward connec-
tion with DOS, had been applied in the investigation of frustrated 
systems efficiently [14–16]. We take its advantage to calculate DOS 
directly [17,18].

We consider a classical Kitaev–Heisenberg spin model on the 
two-dimensional triangular lattice. Similar to the Hamiltonian of 
the Kitaev–Heisenberg model on the honeycomb lattice [4,7], the 
energy (E) can be written as

E = J H

∑

〈i, j〉
Si · S j + J K

∑

〈γ 〉
Sγ

i · Sγ
j + J N

∑

〈〈i,k〉〉
Si · Sk

+ D
∑

i

(
Sz

i

)2
, (1)

where Si denotes the effective spin with unit magnitude. J H is 
an isotropic Heisenberg coupling between spins on the nearest 
neighboring sites (〈i, j〉) of the triangular lattice. The Kitaev inter-
action J K couples the γ -component of spins (γ = x, y and z) on 
the γ -links between the nearest neighboring spins as plotted in 
Fig. 1. J N is a Heisenberg interaction between spins on the next-
nearest neighboring sites (〈 〈i, k〉 〉), and the last term represents the 
single-ion anisotropy along z-axis with the strength D .

Following the WL algorithm, a joint DOS (g(E, M)) is accumu-
lated by the random walk carried out in the energy and magnetiza-
tion (E&M) space, where M denotes the magnetization evaluated 
in the direction of z-axis, namely

M =
∑

i

S z
i (2)

In the continuous E&M space, E and M are discretized by intro-
ducing bins of �E = 0.25 and �M = 0.25 [19,20]. To overcome 
the difficulty of dealing with the boundaries of the accessible con-
formational space and avoiding the calculation process trapped in 
these regions without being able to escape, at the beginning of 
simulation, a preliminary calculation is run to delimit the prac-
tical range of available states [21]. During this initial procedure, 
a bin is marked as accessible state once it is visited, and the total 
number of visited bins is ensured to show a saturation behavior. 
After that, the standard WL algorithm is carried out by simply ig-
noring those bins outside of the determined domain of available 
states [22]. We reduce the modification factor ( f ) according to 

the recipe f i+1 = f 1/2
i until the final modification factor reaches 

ffinal = 1.0000019. For every f , the histogram for all possible E
and M is required not less than 80% of the averaged histogram. The 
WL simulation is performed on an L × L triangular lattice (L = 6
and the total number of spins N = 36) with period-boundary con-
ditions assumed. To confirm the results of L = 6, the lattice of 
L = 12 is also simulated on some parameter points, and the DOSs 
obtained show the same character.

By parameterizing J H = cosϕ and J K = sinϕ , the ratio of J H to 
J K is considered to its whole range by scanning ϕ from 0 to 2π . 
Noting that the parameters have the same values at ϕ = 0 and 2π , 
the range [0, 2π ] actually forms a parameter ring. To give a better 
comparison between DOSs on different parameter points, based on 
the DOS obtained, we extract the E&M map which is the profile 
of DOS on E&M plane, showing all the possible states in the E&M
space. Moreover, we calculate the density of states as a function 
of E (EDOS), i.e. g(E), which is obtained by cumulating g(E, M) of 
different M at every E point.

On the other hand, the Metropolis Monte Carlo simulation 
and the zero-temperature Glauber dynamics (MG) are applied to 
present spin configuration directly. At first, the system is evolved 
by Metropolis algorithm from a relatively high T to a very low T
gradually, and then the zero-temperature Glauber dynamics is ap-
plied to reduce the energy of the system as low as possible. Based 
on the state with the lowest E , the correlation on the nearest 
neighboring spins (Cn) and that on the next-nearest neighboring 
spins (Cnn) are calculated in the forms of

Cn = 〈Si · Si+1〉n (3)

Cnn = 〈Si · Si+2〉nn (4)

The MG simulation is performed on the triangular lattice of L =
24, 36 and 48. All the data with different lattice sizes coincide 
with each other.

3. Results and discussion

3.1. The pure Kitaev–Heisenberg model ( J N = 0 and D = 0)

Without the next-nearest neighboring interaction and the 
single-ion anisotropy, the DOSs obtained from WL simulation are 
plotted in Fig. 2 partially. There are two Heisenberg points at 
ϕ = 0 and π with J K = 0, corresponding to the conventional tri-
angular systems with the pure antiferromagnetic (AFM) and ferro-
magnetic (FM) interactions, where the DOSs in the U and inverse 
U (IU) shapes are observed respectively (Figs. 2(a) and 2(i)). Be-
tween these two Heisenberg points on the parameter ring, the 
DOS shows a continuous variation by the modulation of the in-
teraction ratio, and two shapes of DOS (U and IU types) dominate 
on the whole range of ϕ . It is noteworthy that all the DOSs have 
two sharp corners with the largest |M/N| = 1, which correspond 
to two particular FM states with all the spins aligned along z-axis 
(zFM states). In the case of IU type, the two zFM states with the 
lowest E degenerate with other FM states (with its magnetization 
not aligned along z-axis) on the bottom line, which indicates that 
the dominate interaction is FM. On the contrast, in the case of U 
type, zFM states have the highest energy, which means AFM inter-
action dominates. Between the U and IU types, there are transition 
shapes as shown in Figs. 2(f) and 2(n), where the competition 
between the Heisenberg interaction and Kitaev one induces an in-
termediate energy to the zFM states.

In Fig. 2, it is interesting to note that the second row looks 
just like the reflection of the first row. The reason is that on the 
condition of J N = 0 and D = 0, when the difference of ϕ is π , 
both J H and J K change their sign, and hence the whole Hamilto-
nian changes its sign. Therefore, the DOS is inversed as a whole. 
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