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Using the F-expansion method we obtain a class of analytical matter-wave solutions to Bose–Einstein
condensates with multi-body interactions through the three-dimensional quintic Gross–Pitaevskii
equation. Our results demonstrate that the dynamics of matter-wave solutions can be controlled by
selecting the potential, quintic nonlinearity, and gain coefficients. The obtained matter-wave solutions
may be generated by tuning the cubic nonlinearity to zero via the Feschbach resonance technique and
making the quintic nonlinearity increasing rapidly enough toward the periphery. The stability analysis of
the obtained matter-wave solutions is investigated analytically and numerically.
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1. Introduction

The Gross–Pitaevskii equation (GPE) and its variants are the
most useful physical models in Bose–Einstein condensates (BECs),
where it describes the behavior of the condensate wave function
[1]. Various types of solutions to GPE, such as bright (dark) soli-
tons [2], periodic traveling waves [3], and localized waves [4,5], are
found of great interest because of their applications to a diverse
array of physical systems. As a general form, the inverse prob-
lem method, which is responsible for the existence and stability of
solitons, is considered as the effective technique to solve the GPE
model [6]. A very important aspect of the GPE is the stability of its
solutions; that is, how do they evolve in time when disturbed from
their analytically given forms, which can be addressed numerically.
It is expected that the stability of multidimensional solutions will
be enhanced in GPE models with oscillating dispersion/diffraction
and/or sign-changing nonlinearity [7], or, can conveniently be ad-
dressed by the dispersion and nonlinearity management methods
[8]. The possibility to stabilize multidimensional solitons has also
been reported in Refs. [9–12].

Usually, the nonlinear interactions in BEC are of a cubic nature.
However, the cubic-quintic (CQ) nonlinearity can occur when the
two- and three-body interactions are considered. In this case, the
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properties of the BECs could be significantly affected by the multi-
body interactions characterized by the s-wave scattering length
as , which is controlled by the Feschbach resonance (FR) tech-
niques [13]. Moreover, if the interactions of atomic cloud are con-
sidered as well, the governing equation should still include the
gain (loss) term. In these regimes, a more accurate treatment of
the mean-field energetics of the dense condensates will need to
account for both two- and three-body elastic collisions [14]. Ac-
cording to the zero-temperature mean-field theory, dynamics of
the three-dimensional BEC with multi-body interactions satisfies
the following GP equation [15]

ih̄
∂ψ

∂t
= − h̄2

2m
�ψ + V (r, t)ψ + f

(|ψ |2)ψ (1)

for the condensate wave-function ψ , where V (r, t) is the potential
of the external forces trapping the condensate. The contribution of
multi-particle collisions has a complicated form of the nonlinear
term

f
(|ψ |2) = g|ψ |2 + χ |ψ |4, (2)

where g and χ are the nonlinear coefficients corresponding to the
two- and three-body interactions, respectively. In BECs, the cubic
nonlinearity coefficient g can vanish, which results in the quin-
tic GPE (QGPE). This model can be derived by setting the s-wave
scattering length as to zero via the FR technique [15,16]. In this
case, the three-body collisions could have an appreciable contri-
bution even in a very dilute regime, when the so-called Efimov
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effect [17] becomes possible and the two-body scattering length
becomes larger than the effective two-body interaction radius. For
this, a very large number of three-body bound states (so-called Efi-
mov states) can be formed and the contribution of the three-body
elastic collisions to the density energy may become comparable to
the one arising from two-body interactions. Mostly important, one
can change the strength and the sign of the three-body interaction
by controlling the strength of the two-body interaction via the FR.
Theoretical investigations of the three-body interactions associated
with the QGPE were provided in [18,19].

Based on the above considerations, in this work we construct
analytical matter-wave solutions of the QGPE with quadratic po-
tential and a gain (loss) term:

iψt = −1

2
�ψ + V (r, t)ψ + χ |ψ |4ψ + iγ ψ, (3)

where ψ(x, y, z, t) is the normalized wave function of the conden-
sate with N = ∫ |ψ |2 dr being the number of atoms. Here t is the
time, � = ∂2

x + ∂2
y + ∂2

z represents the 3D Laplace operator, and

r = √
x2 + y2 + z2 is the position coordinate. V (r, t) = α(t)r2 is a

3D isotropic harmonic potential [20] with α(t) being its strength.
When one controls the dynamics of BEC in the trap [21], the trap-
ping frequency can be a function of time t , which leads to the
strength of the harmonic potential α(t) varying with time t . The
parameter γ is the gain or loss coefficient, which is phenomeno-
logically incorporated to account for the interaction of atomic
or thermal clouds. The QGPE also appears in general nonlinear
Schrödinger-type systems near the transition from supercritical to
subcritical bifurcations [22], pattern formation [23], and dissipative
solitons [24].

The paper is organized as follows. In Section 2, the solution
method to Eq. (3) is presented. In Section 3, some analytical
matter-wave solutions are obtained, which may be generated by
setting the s-wave scattering length as to zero via the FR technique
and making the quintic nonlinearity increasing rapidly enough to-
ward the periphery. In Section 4, the stability analysis of the ob-
tained matter-wave solutions is investigated analytically and nu-
merically. Finally, the main findings are summarized in Section 5.

2. Solution method

Utilizing the F-expansion technique and the balance princi-
ple [11], we can write the complex wave function ψ in terms of
its amplitude and phase:

ψ(x, y, z, t) = A(x, y, z, t)exp
[
iB(x, y, z, t)

]
. (4)

Substituting (4) into Eq. (3), one finds the following coupled
equations:

At + 1

2

[
2(Ax Bx + A y B y + Az Bz) + A�B

] = γ A, (5)

−ABt + 1

2

[
�A − A

(
B2

x + B2
y + B2

z

)] − αr2 A − χ A5 = 0. (6)

Next, we assume

A = f (t)
√

F (θ) + h(t)
√

F −1(θ), (7)

θ = k(t)x + l(t)y + m(t)z + ω(t), (8)

B = a(t)r2 + b(t)(x + y + z) + e(t), (9)

where f ,h,k, l,m,ω,a,b, e are real functions of t to be deter-
mined, and F is a Jacobi elliptic function (JEF), which satisfy the
following general first and second-order nonlinear ordinary differ-
ential equations: ( dF

dθ
)2 = c0 + c2 F 2 + c4 F 4, and d2 F

dθ2 = c2 F + 2c4 F 3,

Table 1
JEFs. When 0 < M < 1, the JEFs are periodic traveling wave solutions. When
M → 0, the periodic traveling wave solutions evolve into the periodic trigonometric
functions. When M → 1, the periodic traveling wave solutions become the time-
dependent soliton solutions. When M = 0 or 1, only some of the functions may be
utilized, because of the developing singularities.

c0 c2 c4 F M = 0 M = 1

1 1 −(1 + M2) M2 sn sin tanh
2 1 − M2 2M2 − 1 −M2 cn cos sech
3 M2 − 1 2 − M2 −1 dn 1 sech
4 M2 −(1 + M2) 1 ns csc coth
5 −M2 2M2 − 1 1 − M2 nc sec cosh
6 −1 2 − M2 M2 − 1 nd 1 cosh
7 1 2 − M2 1 − M2 sc tan sinh
8 1 − M2 2 − M2 1 cs cot csch
9 1 −(1 + M2) M2 cd cos 1

10 M2 −(1 + M2) 1 dc sec 1

where c0, c2, and c4 are real constants related to the elliptic mod-
ulus M of JEFs (see Table 1).

Substituting Eqs. (7)–(9) into Eqs. (5) and (6) and requiring
that x j F ±n/2, y j F ±n/2, z j F ±n/2 ( j = 0,1,2; n = 0,1,2,3,4,5), and√

c0 + c2 F 2 + c4 F 4 of each term be separately equal to zero, we
obtain a system of equations:

dΩi

dt
+ 3aΩi − γ Ωi = 0, (10)

dS

dt
+ 2Sa = 0, (11)

dω

dt
+ b(k + l + m) = 0, (12)

da

dt
+ 2a2 + α = 0, (13)

f

[
3

8

(
k2 + l2 + m2)c4 − χ f 4

]
= 0, (14)

h

[
3

8

(
k2 + l2 + m2)c0 − χh4

]
= 0, (15)

de

dt
+ 3

2
b2 − 1

8

(
k2 + l2 + m2)c2 + 10χ f 2h2 = 0, (16)

1

8
h
(
k2 + l2 + m2)c4 + 5χ f 4h = 0, (17)

1

8
f
(
k2 + l2 + m2)c0 + 5χ f h4 = 0, (18)

where Ωi = f ,h. From the above equations one can see that the
analytical solution of this system can be found only if Riccati-type
Eq. (13) for the parameter function a(t) can be solved analytically.
All other parameters depend on a(t) explicitly or implicitly.

Introducing a single auxiliary function δ(t) = ∫ t
0 a dt , we obtain

the following solutions by solving Eqs. (10)–(18):

S = S0 exp (−2δ), (19)

f = f0 exp (−3δ) exp

( t∫
0

γ dt

)
, h = ε

(
c0

c4

) 1
4

f , (20)

ω = ω0 − b0(k0 + l0 + m0)

t∫
0

exp (−4δ)dt, (21)

e = e0 + 1

8

[(
c2 + 18ε2√c0c4

)(
k2

0 + l20 + m2
0

) − 12b2
0

]

×
t∫

0

exp (−4δ) dt, (22)
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