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This letter theoretically analyzes and experimentally demonstrates a novel class of compressibility-near-
zero (CNZ) acoustic metamaterials, achieved by using resonant-type metamaterials, namely the Helmholtz
resonator. We first present a closed analytical formula for the effective compressibility of the proposed
unit cell and then show that two frequencies exist which may support CNZ propagation. We demonstrate
how the choice of the actual operating CNZ frequency depends on the properties of the host and finally
experimentally verify CNZ propagation of acoustic waves.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Near-zero (NZ) metamaterials present a specific subclass of
metamaterials, initially demonstrated in the EM domain [1–5].
Their operation relies on the fact that a non-zero frequency ex-
ists at which the wave number is equal to zero. This results in
propagation characterized by a constant phase over physically long
distances, and gives rise to interesting phenomena such as energy
tunneling, supercoupling and energy squeezing.

By analogy with the EM case, an NZ acoustic metamaterial can
be obtained in two ways: by tailoring either its effective mass den-
sity or its effective compressibility (the reciprocal of the bulk mod-
ulus) to obtain near-zero values at certain frequencies. Recently,
different NZ acoustic metamaterials have been proposed based ei-
ther on tailoring the effective mass density [6–9], or on locally
resonant phononic crystals [10].

In this paper, we analyze and experimentally demonstrate a
novel class of one-dimensional NZ acoustic metamaterials based
on tailoring the effective compressibility. This is achieved using
resonant-type metamaterials based on the Helmholtz resonator
(HR), which has been previously used as a building block for
single-negative acoustic metamaterials, [11–13]. Although at first
it may seem that any metamaterial unit cell will support NZ prop-
agation at a certain frequency, we show that the host structure
needs to be carefully designed and that not one but two frequen-
cies exist capable of supporting NZ propagation, finally leading to
the development of NZ acoustic devices with novel characteristics.
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2. Theory

For a section of an acoustic duct of length l and cross-sectional
area S loaded with an HR with effective neck length lh and cross-
sectional area Sh , the continuity equation can be expressed as:

dV = S
∂v

∂x
l dt + Sh dξ, (1)

provided that the proposed structure is small enough to be con-
sidered as a unit cell of an acoustic metamaterial.

Under the assumption that sound propagation is an adiabatic
process, i.e. for pV κ = const., (1) can be rewritten as:

−β0 dp = ∂v

∂x
dt + Sh

V
dξ, (2)

where β0 is the compressibility of the gas. The neck of the HR thus
acts as a sink, effectively modifying the continuity equation. The
HR can be viewed as the “internal inhomogeneity”; of the cell, and
its influence can be expressed through the effective compressibility
βeff as follows:

−βeff dp = ∂v

∂x
dt. (3)

Eqs. (2) and (3), together with the complex form of the differ-
ential equation for the displacement of the gas in the neck of an
HR (the lossless case), yield the analytical expression for the effec-
tive compressibility:

βeff = β0

(
1 + Sh

V
· 1

Sh
Vh

− lh
ω2

c2

)
, (4)

http://dx.doi.org/10.1016/j.physleta.2014.02.022
0375-9601/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.physleta.2014.02.022
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/pla
mailto:cselyu@yahoo.com
mailto:secujski@uns.ac.rs
mailto:bengin@uns.ac.rs
http://dx.doi.org/10.1016/j.physleta.2014.02.022
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physleta.2014.02.022&domain=pdf


1154 N. Cselyuszka et al. / Physics Letters A 378 (2014) 1153–1156

Fig. 1. (Color online.) Typical transmission coefficient and effective compressibility
of the unit cell (shown in the inset, with its equivalent electrical circuit).

Fig. 2. Equivalent circuit of the HR-loaded (a) CLC–LPF, and (b) LCL–LPF. To preserve
the symmetry, the inductor of CLC–LPF is modeled with two inductances equal to
L/2.

where c is the velocity of sound. This expression suggests that it is
possible to achieve zero effective compressibility at a certain fre-
quency.

The simulated response of the proposed structure (with losses
due to air viscosity only) and its effective compressibility, extracted
using the approach analogous to the EM case [14,15], reveal a
notch in the frequency response due to negative values of effective
compressibility around the resonance of the HR, Fig. 1. Further-
more, βeff equals zero at not one but two frequencies in the vicin-
ity of fr , namely at f01 and f02, where propagation of CNZ nature
might be expected. However, the imaginary part of βeff at f01 is
very large, and therefore no propagation occurs due to high losses.
At f02, the imaginary part of βeff is smaller, but still non-zero,
and consequently the insertion loss is lower but still not negligible,
even though only losses due to air viscosity have been taken into
account. Therefore, by using a simple short section of an acous-
tic duct as a host, CNZ propagation cannot be practically achieved
either at f01 or at f02.

We will now analyze in detail the conditions needed to achieve
CNZ propagation in practice. Instead of a simple duct, as a host
structure we propose a simple lowpass filter (LPF) of the 3rd order,
but we note that this analysis can be applied to other hosts as well.
The central section of the LPF is loaded with one HR, designed so
that its resonant frequency falls within the stopband of the LPF.
We analyze two LPFs: CLC–LPF modeled as shown in Fig. 2(a), and
its dual, denoted LCL–LPF, Fig. 2(b).

In such an environment, HR is driven by pressure variations in
the channel regardless of whether it is located at the inductive
or the capacitive section of the acoustic filter. It should be noted
that the equivalent circuits from Fig. 2 are in essence the same
as those of a short section of an HR-loaded simple duct. The only
difference is in the actual values of L and C : whereas in the case
of LPF, L and C are significantly larger than Lr and Cr , in the case
of a simple duct they are very similar. Therefore, to analyze the
influence of the type of the host to CNZ propagation, we analyze
the influence of decreasing L and C .

Fig. 3. (Color online.) Comparison of simulated lossless responses of equivalent elec-
trical circuits of acoustic CLC- and LCL- low-pass filters (dashed lines), and the same
low-pass filters loaded with one HR (full lines) at their central sections.

In Fig. 3, the responses of both circuits are compared to the re-
sponses of original LPFs. It can be seen that the inclusion of the HR
in both cases results in a new transmission peak and a new trans-
mission zero in the stopband of LPF. As expected, the transmission
zero always occurs at fr . However, the transmission peak occurs at
the frequency higher than fr for HR coupled to the capacitive sec-
tion, and lower than fr for HR coupled to the inductive section of
the filter. To analyze the nature of obtained transmission peaks, we
analytically derive the frequency at which CNZ propagation occurs,
for both HR-loaded CLC–LPF and LCL–LPF.

Provided that the overall length l of the analyzed structures
is sufficiently small, they can be regarded as homogeneous, and
their effective wave number can be calculated. We note that this
condition holds, although it might seem that in the actual im-
plementation both structures are long with respect to the guided
wavelength. However, as it will be shown, at the CNZ frequency
the structures support CNZ propagation with constant phase over
physically long distances, so they are in fact short with respect to
the wavelength and the homogenization process can be applied.

The complex wavenumber k = k′ + jk′′ can be calculated from
the ABCD matrix as kl = arccos(D). In the case of the HR-loaded
CLC–LPF, D can be obtained as:

D = 1 +
1

ZL+2Zr
+ jωC

Zr
ZL(ZL+2Zr)

(5)

where Z L = jωL/2 and Zr = (1 − ω2Lr Cr)/ jωCr . Similarly, for the
HR-loaded LCL–LPF, D is equal to:

D = 1 − ω2LC

1 − ω2Lr Cr
·
(

1 + Cr

C
− ω2Lr Cr

)
(6)

The attenuation constant k′ and the wave number k′′ obtained
from (5) and (6) are plotted in Fig. 4. It can be seen that k′′ equals
zero at two different frequencies, f01 and f02, the first one be-
fore and the other one after the stopband. In fact, CNZ propagation
will be supported only at the one of these frequencies where the
condition D = 1 is fulfilled, i.e. where k′ = 0. In the case of the
HR-loaded CLC–LPF, this frequency is f01, which is obtained from
(5) by equating D to 1:

f01 = 1

2π
√

2CCr
2C+Cr

(Lr + L
4 )

(7)

In the case of the HR-loaded LCL–LPF, this frequency is f02, ob-
tained similarly from (6):
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