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In the wind-driven wave regime, the Miles mechanism gives an estimate of the growth rate of the waves
under the effect of wind. We consider the case where this growth rate, normalised with respect to the
frequency of the carrier wave, is of the order of the wave steepness. Using the method of multiple
scales, we calculate the terms which appear in the nonlinear Schrödinger (NLS) equation in this regime
of fast-growing waves. We define a coordinate transformation which maps the forced NLS equation into
the standard NLS with constant coefficients, that has a number of known analytical soliton solutions.
Among these solutions, the Peregrine and the Akhmediev solitons show an enhancement of both their
lifetime and maximum amplitude which is in qualitative agreement with the results of tank experiments
and numerical simulations of dispersive focusing under the action of wind.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The investigation of the physical mechanisms for the generation
of ocean waves by wind has a long history which starts at the
beginning of the 20th century [1] and is still ongoing. The problem
is highly nonlinear [2] and the feedback at the air–water interface
between wind and water waves is difficult to study experimentally
and theoretically because of turbulence in both fluids.

The problem can be simplified at first by neglecting currents
in the water and by considering the so-called wind-driven wave
regime which is characterised by growing seas with wave ages
cp/u∗ < 30, where cp is the phase velocity of the water waves
and u∗ is the friction velocity of wind over water waves [3]. Direct
field measurements of the pressure induced by airflow on waves
are rare, thus there is no agreement in the scientific community
on the underlying mechanisms leading to wave amplification (for
a review see [2, Chapter 3] and [3]).

In the shear flow model introduced by Miles [4,5] the rate of
energy transfer from the wind to a wave propagating at phase ve-
locity cp is proportional to the wind profile curvature U ′′(zc) at the
critical height zc where the wind speed equals the phase velocity
of the wave, U (zc) = cp . The Miles mechanism has been recently
confirmed in field experiments, in particular for long waves [6].
For a logarithmic velocity profile in the boundary layer, the Miles
growth rate ΓM results in [4,7,8]
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where E is the wave energy, f is the frequency of the carrier wave,
δ = ρa/ρw is the density ratio (1.29 × 10−3 between air and wa-
ter), and α is an empirical constant of the order of 32.5 in the
wind-driven wave regime [7]. The pressure P induced at the water
surface then depends on the surface elevation η as follows [4,8]
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Typical values of ΓM/ f are shown in Fig. 1 of [7] (in that fig-
ure ΓM = γ ) or in Fig. 1 of [9] (where ΓM = β) as a function of
the wave age cp/u∗ . They range from 10−3–10−2 for fast-moving
waves (cp/u∗ > 5) to 10−2–1 for slow-moving waves and labora-
tory tank experiments (cp/u∗ � 5). Thus, the growth rate can be
regarded as a small parameter in the wind-driven wave regime
and generally it is assumed that ΓM/ f = O (ε2), where ε = ak is
the wave steepness, a being the amplitude of the vertical water
displacement η and k the wavenumber of the water wave. For
weak-nonlinear waves the steepness is indeed small and in ocean
waves it is smaller than 0.55, the value for which wave-breaking
occurs [10]. The case ΓM/ f = O (ε2) gives rise to the following
damped/forced nonlinear Schrödinger equation [11,8,12]
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where ν is the kinematic viscosity. Thus, the case ΓM/ f = O (ε2)

describes the quasi-equilibrium between wind and damping effects
due to viscosity.

In this Letter, we consider the case ΓM/ f = O (ε), correspond-
ing to stronger winds, the effect of which overcomes the dissi-
pation due to viscosity. This case turns out to be relevant for
explaining experimental results obtained in the context of disper-
sive focusing of waves under the action of wind [13,14]. We will
insert the aerodynamic pressure term, given in Eq. (2), into the
Bernoulli equation evaluated at the ocean surface and we will use
the method of multiple scales to obtain the corresponding non-
linear Schrödinger equation in the case of fast-growing waves.
Due to the universality of the NLS equation in many other fields
of physics, the considered case can in principle be of interest in
other physical situations where the multiple-scale method can be
applied and the forcing term is introduced at first order in the de-
velopment parameter.

2. Governing equations and the method of multiple scales (MMS)

We recall here the equations governing the propagation of sur-
face gravity waves in the presence of wind and the main assump-
tions used in the method of multiple scales for deriving the NLS
equation.

At low viscosity the water-wave problem can be set within the
framework of potential flow theory [15] and the two-dimensional
flow of a viscous, incompressible fluid is governed by the Laplace
equation

∇2φ = 0 (4)

where φ(x, z) is the velocity potential. This equation is solved to-
gether with the kinematic boundary condition at the free surface
η(x, t)

ηt + φxηx − φz = 2νηxx at z = η(x, t) (5)

and at the bottom

φz = 0 at z = −H (6)

The other boundary condition is given by the Bernoulli equation
which at the free surface takes the form
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where g is the gravity acceleration and P is the excess pressure at
the ocean surface in the presence of wind, given by Eq. (2) in the
context of the Miles mechanism.

We use the method of multiple scales (MMS) to find the terms
in the NLS equations which are related to the wind forcing with
a growth rate of first order in the wave steepness, ΓM/ f = O (ε).
This method is based on the fact that temporal and spatial scales
of the carrier wave (1/ω,1/k) are much smaller than those of the
envelope. MMS has been used for deriving the NLS equation un-
der the assumption of small nonlinearity, ε = ak � 1, and narrow
spectral width �k/k � 1 [16] and successfully applied for includ-
ing high-order nonlinear terms [17] and constant vorticity in wa-
ter waves [18], or in other physical contexts. For example, in the
context of the propagation of optical waves in nonlinear materi-
als [19], this method is also known as the slowly varying envelope
approximation (SVEA) [20,21].

The velocity potential φ and the surface elevation η have the
following representations [17,18]
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where the second index in the amplitudes φ jn, η jn refers to the
harmonics
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The velocity potential at the free surface, φ(x, z = η, t), is written
as a Taylor expansion around z = 0:
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The operators for the derivatives are replaced by sums of operators
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corresponding to fast and slow temporal derivatives, and analo-
gously for ∂/∂x. We use the same notation as in Ref. [18] (note
however that the order of indices in the amplitudes φ jn , η jn is in-
verted).

3. Wind-forced NLS equation

In this section we apply the method of multiple scales for de-
veloping the governing equations in terms of the expansion pa-
rameter ε . Terms of linear order in ε give the dispersion relation
ω = √

gσk, where σ = tanh(kH), and they are not affected by
wind forcing. The wind forcing terms appear in the expansion at
second order in the following relations:
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where A = φ11|z=0 and D = φ21|z=0.
At third order, the new terms are ∂η21/∂t1 in the kinetic

boundary condition (5), which must be evaluated using Eq. (14),
and (ΓM/ω)c2

p(∂η11/∂x1 + ∂η21/∂x0) in the Bernoulli equation at
z = 0, Eq. (7). Including these terms finally gives the wind-forced
NLS equation in the limit of deep-water waves, kH � 1:
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where a = 2i A/cp , β1 = −(dcg/dk)/2 = ω/(8k2), β2 = ΓM(ω +
cgk)/(2ωk) = 3ΓM/(4k), β3 = Γ 2

M/(8ω) and M = ωk2/2.
Note that the equation that we obtain for ΓM/ f = O (ε) dif-

fers, as it should, from the usual equation obtained assuming
ΓM/ f = O (ε2). When ΓM/ f = O (ε2), Eq. (15) reduces to Eq. (3).
Indeed, the terms proportional to ΓM in Eqs. (13)–(14) become of
higher order. Moreover, in the Bernoulli equation at z = 0, the term
(ΓM/ω)c2

p(∂η11/∂x1 +∂η21/∂x0) becomes (ΓM/ω)c2
p∂η11/∂x0. This

term in the forced NLS equation reduces for ΓM/ f = O (ε2) to the
term −iΓMa/2, which corresponds to the one on the right-hand
side of Eq. (3). As we will see in the next section, the two terms
in the NLS equation (15) due to wind forcing correspond to a vari-
ation of the dispersion term and of the phase of the wave field.

It is interesting to calculate the energy evolution. The Miles
growth rate is recovered from the relations at second-order ex-
pansion. Indeed, multiplying Eq. (13) by the complex conjugate a∗ ,
adding the obtained equation to its complex conjugate and inte-
grating by parts yields
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