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The inexorable development of ever more powerful laser systems has re-ignited interest in electro-
magnetic radiation reaction and its significance for the collective behavior of charged matter interact-
ing with intense electromagnetic fields. The classical radiation reaction force on a point electron is
non-conservative, and this has led some authors to question the validity of methods used to model
ultra-intense laser–matter interactions including radiation reaction. We explain why such concern is un-
warranted.
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1. Introduction

Contemporary advances in ultra-intense laser facilities have
driven the recent surge of interest in the collective behavior of
charged matter in extreme conditions, and a particularly fascinat-
ing topic in that context concerns the coupling of an electron to
its own radiation field [1]. An accelerating electron emits electro-
magnetic radiation, and the energy and momentum carried away
by the electromagnetic field must be properly accommodated. In
most practical cases, the Lorentz force on an electron due to an
applied electromagnetic field is considerably larger than the force
due to the electron’s emission, and the effect of the recoil due
to the emitted radiation is negligible or can be adequately repre-
sented using simple physical reasoning. Although such arguments
avoid the difficulties that plague more comprehensive analyses, the
parameter regimes promised by forthcoming ultra-intense laser fa-
cilities ensure that more fundamental considerations are now of
practical necessity. For example, ELI [2] is expected to operate with
intensities 1023 W/cm2 and electron energies in the GeV range, at
which level the radiation reaction force becomes comparable to,
and can even exceed, the applied force due to the laser field.

Several experiments have been proposed in recent years to test
the effects of radiation reaction in ultra-intense laser–matter in-
teractions (see Ref. [3] for a recent review). Particular attention
has been paid to the behavior of a bunch of classical electrons
driven by an ultra-intense laser pulse where the forces between
the electrons are negligible compared to the forces exerted by
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the laser pulse. Fortunately, the Landau–Lifshitz equation [4] for
a single classical electron is integrable when the pulse is modeled
as a plane wave [5,6] and the computational advantages afforded
by neglecting interactions between the electrons are considerable.
Theoretical investigation of the collision between an electron and a
laser pulse has shown that the electron can reverse its direction of
motion if radiation reaction is taken into account [7,8] and it may
be possible to detect this effect in the radiation spectrum. In ad-
dition, it has been shown [9,10] that the volume of the region of
phase space occupied by a bunch of non-interacting electrons re-
duces with time (the bunch cools) due to radiation reaction in the
ambient laser field.

However, the use of kinetic theory to describe a bunch of non-
interacting classical point electrons in this context has recently
been criticized [11] because of the non-Hamiltonian nature of
the Landau–Lifshitz equation (or its progenitor, the Lorentz–Dirac
equation [12]). As a consequence, the entropy 4-current is not di-
vergenceless in kinetic theories induced from the Landau–Lifshitz
equation [13,9,10] or from the Lorentz–Dirac equation [14].

Furthermore, inter-particle interactions should not be ignored
in all situations where radiation reaction plays a role. If the heat-
ing due to the stochasticity of photon emission [15] and the dis-
creteness of charge [10] within the bunch can be neglected, one
might anticipate that the recoil due to emission of radiation would
cool the bunch of electrons in all situations. However, we recently
showed [14] that inter-particle interactions may heat the bunch.
This Letter explores the significance of this observation, and the
pathway that we tread leads directly to an explanation of why the
recent criticisms given in Ref. [11] are unjustified.
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2. Non-relativistic considerations

The simplest way to quickly obtain a flavor of the effects of
inter-particle interactions is to consider the behavior of a bunch of
non-relativistic electrons, and assume that the inter-particle forces
due to the magnetic fields they generate may be neglected. The
force on an electron in the bunch is a superposition of the Lorentz
forces exerted by the other electrons in the bunch and the force
on the electron due to its own radiation field. For simplicity, we
neglect collisions between the electrons and represent the inter-
particle forces using a mean field approximation E to their electric
field.

The Abraham–Lorentz equation (see, for example, Ref. [1])

m
d2x

dt2
= qE(x, t) + mτ

d3x

dt3
(1)

determines the position x(t) of a non-relativistic electron in an
ambient smooth electric field E , where m is the mass of the elec-
tron, q = −e is the charge on the electron and the time constant
τ = q2/6πε0mc3 = 2re/3c where re is the classical radius of the
electron. The total force on the electron is the sum of the mean
field approximation qE to the total force exerted by other electrons
in the bunch and the reaction mτ d3x/dt3 due to the electron’s
own emission. From now on, we will reserve the term bunch for
the smooth continuum specified by the charge density ε0∇ · E .

Following the iterative procedure introduced by Landau and Lif-
shitz [4], the introduction of the requirement m d3x/dt3 = q Ė +
O(τ ) removes runaway solutions and (1) can be written as

m
d2x

dt2
= qE(x, t) + qτ

[
∂t E(x, t) +

(
dx

dt
· ∇

)
E(x, t)

]
(2)

where O(τ 2) terms have been dropped and an overdot indicates
d/dt .

Suppose that the initial position and velocity of the electron are
sampled from a statistical ensemble of initial conditions, and let
〈x(t)〉 be the ensemble average of the electron’s position at time t .
Introducing x = 〈x〉 + ξ into the expansion of (2) to leading order
in the random variable ξ leads to

m
d2〈x〉
dt2

= qE
(〈x〉, t

)

+ qτ

[
∂t E

(〈x〉, t
) +

(
d〈x〉
dt

· ∇
)

E
(〈x〉, t

)]
(3)

and

d

dt

(
1

2
m〈ξ̇ · ξ̇〉

)
= {

q
〈
ξ̇μξν

〉
∂ν Eμ + qτ

[〈
ξ̇μξν

〉
∂ν∂t Eμ

+ 〈
ξ̇μξ̇ ν

〉
∂ν Eμ + 〈

ẋν
〉
∂ω∂ν Eμ

〈
ξ̇μξω

〉]}∣∣
x=〈x〉

(4)

where Greek indices range over 1,2,3 and the explicit time de-
pendence of the electric field E in (4) has been suppressed for
notational convenience.

Simple choices for 〈ξ̇μξν〉|t=0 and 〈ξ̇μξ̇ ν〉|t=0 reveal the signif-
icance of (4). Suppose that the initial velocity and initial position
of the electron are uncorrelated, and there is no preferred direc-
tion for its initial velocity. Hence 〈ξ̇μξν〉|t=0 = 0 and 〈ξ̇μξ̇ ν〉|t=0 =
δμν〈ξ̇ · ξ̇〉/3, where δμν is the Kronecker delta, and using (4) it
follows

d

dt

(
1

2
m〈ξ̇ · ξ̇〉

)∣∣∣∣
t=0

=
[

qτ
1

3
〈ξ̇ · ξ̇〉∇ · E

]∣∣∣∣
x=〈x〉, t=0

. (5)

Let N electrons be represented by a small (finite) element of
the bunch, where the element has volume V and the element’s

centroid is located at x = 〈x〉. Hence, the charge density ρ of the
bunch and electric field E satisfy ∇ · E = ρ/ε0 with ρ(〈x〉, t) =
qN/V .

If the initial velocities of the N electrons are described by a
Maxwell–Boltzmann distribution (with temperature T ), using (5)
the thermal kinetic energy U = N 1

2 m〈ξ̇ · ξ̇〉 of the N electrons sat-
isfies

dU

dt

∣∣∣∣
t=0

=
[
τ

kB T

mε0
ρ2 V

]∣∣∣∣
x=〈x〉, t=0

(6)

where 〈ξ̇ · ξ̇〉 = 3kB T /m has been used, with T the local temper-
ature of the element. It follows from (6) that dT /dt|t=0 > 0 and
the initial tendency of the element is to heat up, rather than cool
down, due to radiation reaction. This result is surprising because
we expect the bunch to cool in response to the emission of radia-
tion.

Although the bunch is not in thermodynamic equilibrium, it is
tempting to formally use the first law of thermodynamics dU =
T dS − p dV to introduce the entropy S of the element. The volume
V of the element satisfies dV /dt|t=0 = 0 because V ∝ 〈ξ ·ξ〉3/2 and
the initial position and velocity of each electron are uncorrelated.
Hence, S satisfies

dS

dt

∣∣∣∣
t=0

=
[
τ

kB

mε0
ρ2 V

]∣∣∣∣
x=〈x〉, t=0

. (7)

The right-hand side of (7) is strictly positive, which is precisely
how one expects the entropy of an isolated bunch of electrons to
behave. However, more general considerations show that all is not
as it seems.

3. Relativistic considerations

The Lorentz–Dirac equation is a fully relativistic description of a
structureless point particle in an applied electromagnetic field Fab
and has the form

d2xa

dλ2
= − q

m
F a

b
dxb

dλ
+ τ�a

b
d3xb

dλ3
(8)

with q the particle’s charge, m the particle’s rest mass, τ =
q2/6πm in Heaviside–Lorentz units with c = ε0 = μ0 = 1, and the
tensor �a

b is

�a
b = δa

b + dxa

dλ

dxb

dλ
. (9)

For an electron, q = −e < 0 as before. The Einstein summation con-
vention is used throughout the following, indices are raised and
lowered using the metric tensor ηab = diag(−1,1,1,1) and low-
ercase Latin indices range over 0,1,2,3. The particle’s 4-velocity
dxa/dλ is normalized as follows:

dxa

dλ

dxa

dλ
= −1 (10)

where λ is the particle’s proper time.
Dirac [12] derived (8) for a classical point electron by appeal-

ing to the conservation condition on the stress-energy–momentum
tensor (see Ref. [16] for a recent discussion of the derivation).
Dirac’s approach required a regularization of the electron’s singu-
lar contribution to the stress-energy–momentum tensor followed
by a renormalization of the electron’s rest mass. His procedure led
to the third-order term in (8), which is the source of the famous
pathological behavior exhibited by solutions to the Lorentz–Dirac
equation (see Ref. [1], and also Ref. [17] for a recent discussion).

The standard approach to ameliorating the problems with the
Lorentz–Dirac equation is to replace the third-order terms in (8)
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