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We present a systematic exact diagonalization study of a quasi two-dimensional few-electron system in
a closed three-dimensional cylindrical geometry containing a constriction that models a quantum point
contact formed within the two-dimensional electron gas. The calculations that are performed using the
configuration interaction approach with multicenter Gaussian basis indicate that the tendency of the
majority spin to gather in the area of an increased effective potential - e.g. by constriction of the quantum

point contact - is distinct already for weak constrictions and low electron numbers. Opposite effects
- nearly equal spin up and spin down densities - are obtained for local cavities of the confinement
potential. Formation of a quasi-bound single-spin island within the constriction is also discussed.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Properties of electron systems near constrictions formed within
the two-dimensional electron gas have attracted a lot of attention
[2] in the context of fractionally quantized conductance plateaux
observed for quantum point contacts (QPCs) [1]. The fractional
plateaux appear besides the integer ones, which are well under-
stood on the basis of the Landauer approach [4] as due to open-
ing of subsequent single-electron transport channels. It is gen-
erally agreed that the appearance of the fractional plateaux re-
sults from the electron-electron interaction, but the exact scenario
of their formation is under discussion. The most popular - and
not always mutually excluding hypotheses - include: spontaneous
spin polarization of the low-density electron gas [1,3,5-14], Kondo
transport mechanism [15-18], Wigner crystallization within the
QPC [19-21], incoherent scattering from ferromagnetic fluctuations
near the Stoner instability [22] and formation of correlated elec-
tron currents [23].

Ferromagnetic ordering of spins within QPC that is obtained
for low electron gas within the density functional theory [2,5,6,
8,10,11] is in an apparent contradiction with the Lieb-Mattis theo-
rem [24]. Possible reasons [2] that the theorem could not hold for
local ferromagnetic ordering within QPC include its finite length
and width, connections to the reservoirs,! and spin-orbit interac-
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1 The exact diagonalization calculations indicate that for finite quasi-one dimen-
sional systems (quantum dots) the spins of the ground-state are ordered antiferro-
magnetically in space: see [25]. In the low-density limit, when the Wigner crystal
is formed the ground-state becomes nearly degenerate with respect to the spin. The
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tion [26]. The only work which goes beyond the mean field theory
is Ref. [27], which uses Monte Carlo techniques and indicates that
the state with ferromagnetic ordering along the QPC is always
higher in the energy than the spin-unpolarized state.

The dependence of fractional conductance plateaux on temper-
ature [16] indicates the possible Kondo mechanism of the trans-
port [15-18]. The necessary prerequisite of the Kondo mechanism
is that QPC gives support to a quasi-bound single-electron-spin
state [15]. Formation of this state is under debate: Refs. [18]
and [28] both using local spin-density DFTs found an island of an
uncompensated single-spin state quasi-bound within QPC. How-
ever, several papers using similar methodology [8,10,11,14] con-
cluded that QPC does not support a quasi bound-state. Calculations
of Ref. [29] based on the Hartree-Fock methods indicated that the
quasi bound-state is formed but with zero spin. A study that goes
beyond the mean field approach seems necessary for the definitive
answer. Recently, a microscopic explanation for 0.7 anomaly was
proposed [30] which assumes no spin polarization at zero mag-
netic field, and indicates that the fractional plateau results from
the smeared van Hove singularity in the local density of states near
the bottom of the lowest subband within QPC.

In this work we investigate the interaction effects near con-
strictions of the confinement potentials using the configuration-
interaction approach which gives the exact solution of the Schro-
dinger equation for a few interacting electrons. We find (i) a dis-
tinct tendency for formation of majority spin density near confine-
ment potential constrictions, (ii) that this tendency is triggered by

exchange potential in the DFT approaches is then likely to promote the spin polar-
ization.
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Fig. 1. Schematics of the considered geometry. The electrons are free to move within
a cylindrical area of radius R; =50 nm with a finite extension along the axis and
the radial direction. A constriction is formed at a side of the cylinder.

the electron-electron interaction, and (iii) that a single-spin island
within the QPC is formed when it is long enough.

2. Theory

We consider a few-electron system which is confined in the
cylindrical geometry given by Fig. 1. In the previous studies, the
periodic boundary conditions were occasionally used for discussion
of states near QPCs, in form of a strictly 1D [29], or 2D ring [27].
The present model is closer to the actual constriction present in
QPC devices.

The electrons are confined within a cylindrical area of central
radius R; = 50 nm (see Fig. 1). The area has a finite extension
along the axis (~ 80 nm). The cylindrical confinement of elec-
trons is implied by a choice of the multicenter Gaussian basis
for single-particle wave functions, according to the procedure used
previously for description of transport in two-dimensional semi-
conductor nanochannels [31,32]. Namely, we consider basis func-
tions
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with the centers of Gaussians (Xy, Y, Zx) forming a uniform mesh
on the surface of the cylinder. The mesh contains 11 x 48 centers
with 11 locations along the axis of the cylinder (see Fig. 2), and 48
along the circumference. We use the localization parameter of the
Gaussians o = 0.023 [1/nm?], which allows for a smooth tunneling
of electrons between the neighbor centers and imply localization
of wave functions in the direction from the axis of the order of
2/a >~ 13 nm (see Fig. 1). Thus the region occupied by electrons in
the radial direction is of the order of the one present in the growth
direction of the two-dimensional electron gas.
We consider the following single-electron Hamiltonian

2
he h
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where m* = 0.067mg is the GaAs conduction band effective mass,
V(x,y,z) is the potential which is introduced to tailor a constric-
tion within the cylinder (see Fig. 2), up is the Bohr magneton,
g =—0.44 is the GaAs Landé factor, and B is the value of the mag-
netic field oriented along the axis of the cylinder. In this work we
consider a small value of the magnetic field B = —0.01 T, which is
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Fig. 2. The orange-colored contours show the potential forming the constriction at
the central cross-section of the cylinder (distance of the axis p = R;, where [ stands
for the coordinate along the circumference of the cylinder). The gray contour lines
in the background show the single-electron ground-state charge density, and the
crosses - the centers of the Gaussian functions of the basis (1). Plots (a) and (b)
correspond to the constriction of a length of 46 nm and 164 nm, respectively. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

introduced to residually split the degeneracies of the few-electron
spectra with respect to the spin (the difference of spin-up and
spin-down single-electron energies is then 0.25 peV). For the ap-
plied value of B the orbital effects of the magnetic field can be
neglected. The eigenequation of operator (2) is diagonalized in the
basis

Vu(x,y,2,0) = x(0) ) _cf filx, y,2), (3)
k

where x is one of the eigenstates of the o, Pauli matrix.
The N-electron Hamiltonian
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is diagonalized according to the standard procedure of configu-
ration interaction (CI) approach in the basis of antisymmetrized
products (Slater determinants) of the single-electron spin-orbitals
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where A is the antisymmetrization operator and d; is determined
by diagonalization of the Hamiltonian (4). We use GaAs dielectric
constant of € =12.4.

The CI calculation requires evaluation of Coulomb matrix ele-
ments. In this work we use the approach applied previously for
the three-dimensional description of states localized in quantum
dots [33]. Instead a large number of six-dimensional integrations,
we perform sequentially two operations in three-dimensional
space [34]. We first solve the Poisson equation for the Coulomb
potential generated a product of single-particle wave functions for
one electron [33,34], and next integrate it with the product of
wave functions of the other electron.

The few-electron basis (5) is constructed using 28 lowest-
energy single-electron spin-orbitals which ensures convergence of
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