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We study the superfluid phase transition in the two-dimensional (2D) excitonic system. Employing
the extended Falicov–Kimball model (EFKM) and considering the local quantum correlations in the
system composed of conduction band electrons and valence band holes we demonstrate the existence
of the excitonic insulator (EI) state in the system. We show that at very low temperatures, the
particle phase stiffness in the pure-2D excitonic system, governed by the non-local cross correlations,
is responsible for the vortex–antivortex binding phase-field state, known as the Berezinskii–Kosterlitz–
Thouless (BKT) superfluid state. We demonstrate that the existence of excitonic insulator phase is a
necessary prerequisite, leading to quasi-long-range order in the 2D excitonic system.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The interesting quasiparticles, excitons, play the fundamen-
tal role in the physics related to the recent revelations on the
excitonic insulator (EI) state, [1–4] excitonic Bose–Einstein con-
densation (BEC) [3–6] and the excitonic superfluidity, [7–13]. In
analogy with Cooper pair condensate [14], one can naturally ex-
pect that the electron–hole pairs (excitons), being the bosons
with neutral charges, should eventually undergo BEC or the Bose-
superfluid Berezinskii–Kosterlitz–Thouless (BKT) transition [15,16]
(in the case of negligible quantum dissipations) at the very low
temperatures. The first one is typical for the three-dimensional
(3D) system, where it is the dominant phase transition, whereas,
the second type of transition is typical for two-dimensional (2D)
systems, where the long-range order is absent [17,18]. As in the
case of the usual Bose gases, there should be a relation between
these two excitonic phase transitions as it is reported recently [11].
It is well known that the BEC in the interacting uniform systems
occurs only for D > 2. However, the absence of BEC does not nec-
essarily imply the lack of a superfluid phase transition in D = 2,
assuming that the well-defined conditions are satisfied by the sys-
tem [7,12]. In sharp contrast to the 3D case, interactions in 2D
Bose system cannot be treated as a minor correction to the BEC
picture of the ideal Bose gas and they qualitatively change the be-
havior of the system. In fact, the excitonic superfluidity requires
the interacting Bose gas, [19] on the contrary, BEC does not. The
BEC is always superfluid and the existence of the critical Landau
velocity [19] in a Bose–Einstein condensed gas is well known [20].
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On the other hand, the ideal Bose gas could exhibit the phase tran-
sition to the BEC state being absolutely not superfluid.

Despite the continuous attempts, using the ultra-high quality
materials, to observe superfluidity in bilayer electron–hole systems,
such as the double wells in the GaAs–AlGaAs heterostructures
[21–23] and graphene bilayers (in the case of graphene, barriers
as thin as 1 nm), the superfluid phase has not been observed yet,
except of quantum Hall regime in the presence of the external
magnetic field, where the physics is quite different [9]. Accordingly,
it may seem that the electron–hole superfluidity at the vanishing
external magnetic field will never occur in a solid state system,
however, it has been shown [24] that a double bilayer graphene
system, separated by barrier of thickness 1 nm, should generate an
excitonic superfluid at experimentally attainable temperatures, and
in the case of the absence of the external magnetic field. One of
the key reasons why the excitonic superfluidity is so hard to ob-
serve experimentally in 2D case is in fact related to the dominant
role of quantum fluctuations at low dimensions and at low tem-
peratures, when the very large zero-point oscillations are present.
This peculiarity is due to the absence of any real heavy particle in
the electron–hole (e–h) system.

In the present paper, we address the role of the particle phase
coupling in the purely 2D in-plane interacting excitonic system. We
explore the low-temperature quantum collective behavior of the
excitons and we extend the theoretical works mentioned above,
by showing that the formation of the excitonic superfluid state
is governed by the non-local cross correlations between nearest
neighbors (n.n.) excitonic pairs in contrast to the formation of the
EI state, where the local on-site correlations are important. We
derive the BKT transition lines, and we discuss the values of the
physical parameters entering in the system.
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2. The model

For the study of the EI state and the excitonic superfluidity
in 2D, we have chosen the two-band extended Falicov–Kimball
model (EFKM), [3,4] due to its large applicability for treatment of
the electronic correlations. The Hamiltonian of the EFKM model is
given by

H = −tc

∑
〈r,r′〉

[
c̄(r)c

(
r′) + h.c.

] − μ̄
∑

r

n(r)

− t f

∑
〈r,r′〉

[
f̄ (r) f

(
r′) + h.c.

] + εc − ε f

2

∑
r

ñ(r)

+ U
∑

r

1

4

[
n2(r) − ñ2(r)

]
. (1)

Here f̄ (r) (c̄(r)) creates an f (c) electron at the lattice posi-
tion r, the summation 〈r, r′〉 runs over pairs of n.n. sites of 2D
square lattice. The density type shorthand notation is introduced:
n(r) = nc(r) + n f (r) and ñ(r) = nc(r) − n f (r). Next, tc is the hop-
ping amplitude for c-electrons and εc is the corresponding on-site
energy level. Similarly, t f is the hopping amplitude for f -electrons
and ε f is the on-site energy level for f -orbital. The sign of the
product tct f determines the type of semiconductor, for tct f < 0
(tct f > 0) we have a direct (indirect) band gap semiconductor. The
on-site (local) Coulomb interaction U in the last term of the Hamil-
tonian in Eq. (1) plays the coupling role between the electrons in
the f and c sub-systems. The chemical potential μ̄ is μ̄ = μ − ε̄ ,
where ε̄ = (εc + ε f )/2. We will use tc = 1 as the unit of energy
and we fix the band parameter values εc = 0 and ε f = −1. For the
f -band hopping amplitude t f we consider the values t f = −0.3
and t f = −0.1. Throughout the paper, we set kB = 1 and h̄ = 1
and lattice constant a = 1.

3. The EI state discussion

The Hamiltonian in Eq. (1) is containing two separate quadratic
terms and is suitable for decoupling by functional path integra-
tion method [25]. We use imaginary-time fermionic path integral
techniques, and we introduce the fermionic Grassmann variables
f (rτ ) and c(rτ ) at each site r and for each time τ , which varies
in the interval 0 � τ � β , where β = 1/T with T being the ther-
modynamic temperature. The time-dependent variables c(rτ ) and
f (rτ ) are satisfying the anti-periodic boundary conditions x(rτ ) =
−x(rτ + β), where x = f or c. After decoupling the last interac-
tion term in the Hamiltonian in Eq. (1) we will have for the grand
canonical partition function of the system

ZGC =
∫

[Dc̄ Dc][D f̄ D f ][DV ][D�]e−S[c̄,c, f̄ , f ,V ,�], (2)

where the action in the exponential is given by

S[c̄, c, f̄ , f , V ,�]

=
∑

r

β∫
0

dτ

[
V 2(rτ )

U
+ �2(rτ )

U
− iV (rτ )n(rτ ) − �(rτ )ñ(rτ )

]

+
∑

x= f ,c

SB [x̄, x] +
β∫

0

dτH(τ ). (3)

The new variables V (rτ ) and �(rτ ) in the action are the decou-
pling fields for quadratic terms in the Hamiltonian, in Eq. (1),
proportional to n2(rτ ) and ñ2(rτ ) respectively. Next, SB [ f̄ , f ] and

SB [c̄, c] are Berry actions for f and c-electrons and they are de-
fined as follows: SB [x̄, x] = ∑

r

∫ β

0 dτ x̄(rτ )ẋ(rτ ), where ẋ(rτ ) =
∂τ x(rτ ) is the time derivative. Next, we will factorize usual elec-
tron operators f and c in terms of new fermionic variables f̃ and
c̃ coupled to the unitary charge-carrying U(1) rotor. To this end we
write the potential V (rτ ) as the sum of a static and periodic part
V (rτ ) = V 0 + Ṽ (rτ ). Then, for the periodic part, we introduce the
U (1) phase field ϕ(rτ ) via the “Faraday”-type relation [26]

Ṽ (rτ ) = ∂ϕ(rτ )

∂τ
. (4)

For the static part V 0 and �(rτ )-field, the saddle-point evaluations
give V s.p.

0 = i Un
2 − iμ̄ and �s.p. = Uñ

2 − εc−ε f
2 . Here n is the average

total particle density n = 〈nc(rτ )〉 + 〈n f (rτ )〉 (furthermore, we will
fix n = 1, corresponding to the case of half-filling [3,4]) and ñ is
the average of the difference of particle densities ñ = 〈ñ(rτ )〉. Then
the partition function of the system becomes

ZGC =
∫

[Dc̄ Dc][D f̄ D f ][Dϕ]e−S[c̄,c, f̄ , f ,ϕ] (5)

and the total action in Eq. (3) reduces to

S[c̄, c, f̄ , f ,ϕ] = Seff[ϕ] + SB [c̄, c] + SB [ f̄ , f ]

− tc

∑
〈r,r′〉

β∫
0

dτ
[
c̄(rτ )c

(
r′τ

) + h.c.
]

− t f

∑
〈r,r′〉

β∫
0

dτ
[

f̄ (rτ ) f
(
r′τ

) + h.c.
]

+
∑

r

β∫
0

dτ
[
μnn(rτ ) + μññ(rτ )

]
. (6)

Here

Seff[ϕ] =
∑

r

β∫
0

dτ

[
ϕ̇2(rτ )

U
− 2μ̄

iU
ϕ̇(rτ ) − iϕ̇(rτ )n(rτ )

]
(7)

is the phase-only action, which contains fluctuating imaginary
term iϕ̇(rτ )n(rτ ). The chemical potentials μn and μñ are defined
as μn = Un

2 − μ̄ and μñ = εc−ε f
2 − Uñ

2 .
Next, we perform the local gauge transformation to new

fermionic variables f̃ (rτ ) and c̃(rτ ). For the electrons of f and
c orbitals, the U(1) gauge transformation could be written as[

x(rτ )

x̄(rτ )

]
= Û(ϕ) ·

[
x̃(rτ )

¯̃x(rτ )

]
, (8)

where Û(ϕ) is the U(1) transformation matrix Û(ϕ) = Î ·
cosϕ(rτ ) + iσ̂z · sinϕ(rτ ) with the unit matrix Î and σ̂z being
the Pauli matrix.

After those transformations we can write the total action of the
system in the Fourier-space representation introducing the vector-
space notations and, furthermore, we will derive gap equation for
the excitonic order parameter Δ. The effective phase averaged ac-
tion of the system in the Fourier space takes the following form:

Seff[˜̄c, c̃, ˜̄f , f̃ ] = 1

βN

∑
kνn

[ ¯̃ck(νn),
¯̃f k(νn)

]
G−1(k, νn)

[
c̃k(νn)

f̃k(νn)

]
.

(9)

Here G−1(k, νn) is the inverse of the Green function matrix, given
by
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