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We calculate Shannon and Fisher entropies in the position and momentum space, and some complexity
measures for a variationally described hydrogen atom confined in soft and hard spherical boxes of varying
dimension rc and selected values of strength U0. We include calculations for a free particle trapped in
impenetrable boxes. It is found that the Shannon entropy Sr becomes negative for small cavity radii and
large values of U0, due to the highly localized nature of the particle. For soft confinement and small
cavity dimensions, the entropies change very rapidly over short radial intervals.
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1. Introduction

In information theory, entropy is a measure of the uncertainty
associated with a random variable. In this field, the term usually
refers to the Shannon entropy, which measures the expected value
of the information contained in a message, usually in units such as
bits, i.e., it is a measure of the average information content that is
missing when the value of the random variable is unknown. This
concept was introduced by Claude E. Shannon in his 1948 paper
“A Mathematical Theory of Communication” [1], in which, he sets
out to find fundamental limits on signal processing operations such
as compressing data and on reliably storing and communicating
data. Since its proposal this theory has expanded into a number of
applications in other areas, such as statistical inference, cryptogra-
phy, thermal physics, quantum computing, atomic and molecular
structure and chemical reactivity.

In quantum computation [2] Shannon’s entropy represents an
absolute limit on the best possible lossless compression of any
communication, under some particular constraints. Shannon’s en-
tropy appears in the description of mean excitation energy [3] and
it relates to certain features of the chemical bond [4]. Since the
total entropy increases with the improvement of the basis, it has
been used as a measure of basis quality in atomic and molecular
calculations [5–7], and also to estimate the degree of correlation
included in a wave function [8,9] as well as in several applications
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in physical chemistry [10]. In chemistry, such entropy is closely
related to electron delocalization which plays a crucial role in aro-
matic compounds [11]. There is a connection between Shannon
entropy and the lowest ionization potential in atoms, as obtained
by means of Koopman’s theorem [12]. It has been employed as
a quantitative measure of spin polarization associated with the
ground state of some atoms [13], and even to describe the spread-
ing of wave packets in fractal models [14], and also to analyze
eigenstates and coherent states supported by a Poschl–Teller [15]
potential and bound states for various systems [16].

Shannon’s entropy has recently received an increasing atten-
tion [17] in connection with studies of atoms confined in im-
penetrable boxes, where the latter represents a simplified model
to analyze how the atomic structure is modified when subjected
to high pressure [18]. Shannon’s quantum entropy has been in-
terpreted as the uncertainty associated with the particle position,
which in turn relates to the corresponding degree of localization-
delocalization [8]. Confined quantum systems such as atoms and
molecules trapped in impenetrable boxes, quantum dots and quan-
tum wells, are ideal systems to analyze the concept of localization-
delocalization. The Shannon entropy behavior has recently been
studied for the ground state of one-, two- and three-electron atoms
and ions in hard spherical boxes [17]. For several of these sys-
tems, local maxima and minima have been found along the curve
of Shannon’s total entropy as a function of the confinement ra-
dius. It has also been found that Shannon’s entropy in the position
space becomes negative for a strong confinement regime (very
small cavity dimensions) in impenetrable boxes. In this connec-
tion, introducing a cavity of padded walls (soft confinement) for
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an atomic or molecular system would represent a physically more
realistic model. This is precisely the problem we undertake in the
present report, where the behavior of several quantum mechanical
properties of the hydrogen atom confined by soft spherical walls
of varying strength is analyzed as a function of the box radius rc .

The Shannon entropies in the position and momentum space
are defined as

Sr = −
∞∫

0

ρ(r) ln
[
ρ(r)

]
d3r, (1)

S p = −
∞∫

0

γ (p) ln
[
γ (p)

]
d3 p, (2)

whereas the total Shannon entropy is given by

St = Sr + S p . (3)

A quantity that is closely related to the Shannon entropy which
describes more adequately the degree of delocalization of the elec-
tronic cloud in a system corresponds to the Shannon entropy
power[1,19]:

Jr,p = 1

2πe
e2Sr,p/3. (4)

The Fisher entropies [20] in the position and momentum space are
given by

Ir =
∞∫

0

| �∇ρ(r)|2
ρ(r)

d3r =
∞∫

0

4

[
dψ̃(r)

dr

]2

d3r, (5)

I p =
∞∫

0

| �∇γ (p)|2
γ (p)

d3 p =
∞∫

0

4

[
dφ̃(p)

dp

]2

d3 p, (6)

where ρ is the one-particle probability density of the system, mea-
sures the concentration (sharpness) of the electron density. Fisher’s
entropy and the Shannon entropy power fulfill a generalized uncer-
tainty relation [19,21]:

1

3
Ir,p Jr,p � 1. (7)

By plotting Jr,p vs Ir,p one obtains the so-called Fisher–Shannon
information plane, which provides us with a very useful tool to sys-
tematically analyze the electron correlation in atoms [22].

Much effort has been devoted to Fisher’s information measure,
giving rise to a wide spectrum of physical applications [23]. For
example, minimizing of Fisher’s measure leads to a Schrödinger-
like equation for the probability amplitude, where the ground state
describes equilibrium physics and the excited states account for
non-equilibrium situations [24]. In analogy to Shannon entropy’s
classical meaning, known to be connected with disorder, Frieden
et al. [25] extensively studied the concept of order or complexity
and showed that it is associated with the Fisher entropy. Another
measure of complexity is due to López-Ruiz, Mancini and Calbet
(LMC) [26], which was used in the context of electronic structure
of atoms and molecules [27]. The Fisher–Shannon entropy power
is a good descriptor of the complexity and it is related to the LMC
complexity [28–32].

Shannon [1] and Fisher [20] entropies can thus be utilized to
estimate the degree of localization for a quantum mechanical sys-
tem both in position and momentum space when analyzing statis-
tical complexity measures.

Calculations of Shannon entropies have been reported for one-
electron atoms by Sen [17] and of Fisher–Shannon plus statistical

complexity measures for two-electron atoms by Howard et al. [33],
and also for the molecular ion H+

2 by Montgomery and Sen [34].
Very recently, similar calculations for confined one-electron sys-
tems have been addressed in a review article by Sen et al. [35].

In this report, Shannon and Fisher entropies are calculated in
the position (Sr, Ir ) and momentum space (S p, I p) plus the com-
plexity measures given by the so-called Fisher–Shannon products
( Jr,p Ir,p), also expressed in both spaces, for the hydrogen atom
spherically confined in soft and impenetrable (as a limiting case)
boxes. For the latter, calculations for a free particle in a box are
also included. For the atomic system and the free particle the
evolution of these quantities is analyzed in terms of the cavity di-
mension rc and strength U0.

The densities

ρ(r) = ∣∣ψ̃(r)
∣∣2; (8)

γ (p) = ∣∣φ̃(p)
∣∣2

, (9)

are defined in terms of the one-particle system wave functions
ψ̃(r), φ̃(p) in position and momentum coordinates, respectively.

The Fisher–Shannon products, expressed in both spaces, are
Pr = Jr Ir and P p = J p I p , respectively, where Jr and J p are the
aforementioned quantities, Shannon entropy powers,

Jr = 1

2πe
e2Sr/3; (10)

J p = 1

2πe
e2S p/3. (11)

In Section 2 we discuss the free-particle-in-a-box case and
briefly review the variational method based on atomic wave func-
tions expanded in Slater-type basis sets where, for soft confine-
ment (finite U0), the radial coordinate extends over the whole
space (r goes from 0 to ∞). When U0 −→ ∞ (hard spherical con-
finement) the atomic wave function includes a cut-off factor to
ensure correct fulfillment of Dirichlet boundary condition (vanish-
ing wave function at the box edge, where the integral is performed
from 0 to rc). Section 3 is devoted to the presentation and discus-
sion of results obtained by this method, whereas some concluding
remarks are left for Section 4.

2. Method of calculation

The eigenfunctions for a free particle in a spherical box of ra-
dius rc are given by

ψnlm(r, θ,φ) = Anl jl(xnlr/rc)Ylm(θ,φ), (12)

with energies

Enl = x2
nl

2r2
c
, (13)

where Anl is a normalization constant, xnl is the nth-root of the
spherical Bessel function jl and the Y ′

lms are the spherical harmon-
ics.

Since we consider in particular the ground state, the corre-
sponding wave function is

ψ100(r, θ,φ) = A10 j0(x10r/rc)Y00(θ,φ)

= A10√
4π

j0(x10r/rc), j0(τ ) = Sin(τ )/τ . (14)

The normalized ground state wave function for a spherically con-
fined free particle in an impenetrable box is thus given by
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