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The Letter presents a numerical study of convection in a finite fluid layer heated from below and with
homogeneous internal heat generation. Transitions between the conducting state, hexagonal, and roll
flows are investigated for the Prandtl number in the range [0.1,100] and the Rayleigh number from
subcritical values up to 1.5 Racr . The calculations reveal different directions of circulation in the stable
hexagons above and below a critical Prandtl number value Prcr . Close to the Prcr , stable overcritical rolls
are detected.
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1. Introduction

This work investigates convection induced by internal heat gen-
eration. The phenomenon plays a fundamental role in many en-
vironmental and industrial processes, for example, motion in the
atmosphere where heat is generated by the absorption of sunlight
[1] and convection in the Earth’s mantle where heat is produced by
the radioactive decay of elements [2]. Internal heating also arises
from chemical reactions and the application of an electric field to
conducting fluids [3]. Convection retained by internal heat sources
should be considered in nuclear safety engineering for predicting
the behaviour of the nuclear reactor core cooling [4,5].

By means of direct numerical simulation, we investigate con-
vection in a finite horizontal fluid layer heated from below and
with uniform internal heating. The layer is confined between two
rigid perfectly conducting horizontal plates kept at constant tem-
peratures Tbot and Ttop , with Tbot > Ttop , and adiabatic side walls.
The basic state of the fluid is static with the pressure in hydro-
static balance and a parabolic temperature profile between the
upper and lower plates. This approach allows investigation of a
great variety of questions concerning such problems as the on-
set of convection, flow evolution, stability of flow patterns, etc.
A comparatively simple but realistic problem statement provides
a possibility for experimental validation of the numerical results.

For the standard description in terms of the Oberbeck–Boussi-
nesq equations, the system is determined by three dimension-
less control parameters. Two of the parameters are essential for
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the classical Rayleigh–Bénard problem. These parameters are the

Rayleigh number, Ra = gβH3δT
νκ , and the Prandtl number Pr = ν

κ .
The third parameter is induced by the internal heat generation,

which can be expressed as q = Q H2

νδT [6]. Here g is the absolute

value of the gravitational acceleration, β = − 1
ρ

∂ρ
∂T is the thermal

expansion coefficient, ρ is the fluid density, H is the thickness of
the fluid layer, δT = Tbot − Ttop is the temperature difference be-
tween bottom and top plates, ν is the kinematic viscosity, κ is
the thermal diffusivity, and Q is the volume strength of the heat
source.

A nonlinear conductive profile relates an internal heating layer
to other non-symmetric fluid arrangements caused, for example,
by variable material properties (non-Boussinesq liquid), surface
tension (Bénard–Marangoni convection), and different conditions
on the upper and lower boundaries. Broken symmetry changes
the scenario for the convection onset compared to the Rayleigh–
Bénard convection in a layer with a linear conductive temperature
profile. For the latter, an inherently symmetric case, the linear
stability theory yields the critical Rayleigh number Racr at which
convection first sets in. For an infinite horizontal layer with rigid
boundaries, Racr = 1708 [7]. Weakly nonlinear analysis declares
that steady motion in the form of two-dimensional rolls is the only
stable flow pattern immediately above the threshold. All three-
dimensional patterns, such as hexagons or squares, are unstable
[8]. Under non-symmetric conditions the critical Rayleigh number
Racr is less than in the symmetrical case, and steady motions are
possible for Rayleigh numbers below the critical value prescribed
by the linear theory [9,10]. This is finite amplitude subcritical con-
vection, which can be induced by disturbances of sufficient am-
plitude. (Infinitesimal perturbations decay below Racr .) Instead of
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two-dimensional rolls, hexagonal flow pattern becomes favoured
in the vicinity of the threshold. As the Rayleigh number increases,
hexagons lose their stability and transform into rolls [11].

The study F. Busse performed for non-Boussinesq systems [11]
plays an important role in understanding convection onset in fluid
arrangements with broken inversion symmetry. This researcher
considered the temperature dependence of all relevant fluid prop-
erties: density, viscosity, thermal conductivity, and heat capac-
ity. To describe the deviation from the Boussinesq approximation
quantitatively, a special parameter, P , has been introduced. The
value of this parameter determines the shift in the critical Rayleigh
number from the classical value Racr , and the stability bound-
aries for hexagons and rolls, the subcritical domain Ramin(P,Pr) <

Ra < Racr where only finite amplitude motion is admissible. The
sign of P defines the direction of circulation in hexagons. For
P > 0 stable hexagons have a downward flow in their centres,
and for P < 0 the flow is upward. When only thermal conduc-
tivity depends on temperature, P is proportional to ∂κ/∂T and
has the same sign, that is, fluid in the centre of the cell flows in
the direction of increasing heat conductivity. In a layer with rigid
boundaries maintained at a fixed temperature, the conductive tem-
perature profile due to ∂κ/∂T > 0 is convex upward, as in a layer
with homogeneous heating. The corresponding stable flow pattern
is down-hexagons.

Theoretical and experimental studies of convective motion gen-
erated by internal heating began in the 1960s almost contem-
poraneously with the investigation of motion in non-Boussinesq
liquids. However, the effect of internal heating has received con-
siderably less attention than the effect of temperature dependent
material properties, and from the beginning contradictory results
were acquired. The discrepancies refer to the stability of hexagons
with up- (l-type) and down (g-type) fluid motion in the centre of
the cell, competition between rolls and hexagons as the preferred
mode near the stability threshold, and the length of the subcrit-
ical domain. Qualitative validation of the results obtained for an
internally heated layer has typically been performed through com-
parison with non-Boussinesq cases.

R. Krishnamurti used the similarity between different non-
symmetric cases in her investigation of convection near the critical
Rayleigh number in a horizontal layer with a steadily changing
mean temperature [12,13]. Theoretical and experimental studies
were performed for a horizontal layer bounded above and below
by perfect heat conductors. The asymmetric configuration has been
produced by changing the boundary temperature at a constant
rate η. Homogeneous cooling at the boundaries results in the same
mathematical problem as internal heating with a fixed tempera-
ture at the boundaries. Following F. Busse [11], stable finite am-
plitude motion in the form of hexagons was found to be the only
stable planform in the subcritical domain Ramin(η) � Ra � Racr(η),
Rmin = Racr − Ramin , and immediately above the critical value, at
Racr(η) � Ra � RaHR(η), RHR = RaHR − Racr; Ramin � Ra � RaHR is
the range where hexagons are the only stable flow pattern. Both
studies [11,12] were performed for large Prandtl numbers. The di-
rection of circulation in the stable hexagons was determined by
the shape of the conductive temperature profile, but contrary to
[11], hexagons with ascending flow in the centres were claimed to
be stable as long as the conductive temperature profile was con-
vex upward (η < 0). Recently, S.C. Generalis and F. Busse [14] shed
light on this discrepancy testifying to the mistake in the algebraic
transformation in [12].

Convection generated by internal heat sources has been inves-
tigated mostly in a layer with an isothermal, perfectly conducting
upper boundary and an adiabatic lower boundary. In this arrange-
ment, a hexagonal convection pattern with fluid descending in the
centres of the cells has been predicted theoretically [15,16] and
observed in experiments [17–19]. All of these studies have been

performed for Rayleigh numbers above the critical value and for
Pr > 1.

A theoretical investigation performed by M. Tveitereid and
E. Palm [20] for an internally heated layer bounded by an isother-
mal plane above an insulating plane, deserves special attention.
The authors demonstrated that the extent of the subcritical region
Ramin , being rather small, depends on Pr noticeably. For Pr = 0.25,
Rmin = 0 and everywhere else, Rmin > 0; therefore, Pr = 0.25 ap-
pears to be a critical value (Prcr) for finite amplitude convection.
Moreover, in the vicinity of Racr , stable flow pattern consists of
down-hexagons at Pr > 0.25, for Pr < 0.25 the stable planform is
up-hexagons; close to Pr = 0.25 it is two-dimensional rolls. To the
best of our knowledge, although predicted in [20], the exchange
of stability between down-hexagons, rolls and up-hexagons, which
occurs at varying Prandtl numbers and a Rayleigh number fixed at
a value slightly above Racr , has not been observed in experiments
or in numerical simulations. This is also true for a fluid arrange-
ment with isothermal upper and lower boundaries. In the latter
case, there are no theoretical indications that different types of
hexagons can be stable at moderate Prandtl numbers and Pr � 1.
For example, theoretical study [14], concerned with the stability of
secondary flows in a homogeneously heated layer with two rigid
boundaries maintained at constant and equal temperatures, sug-
gests stable finite amplitude motion in the form of down-hexagons
both for Pr = 0.1 and Pr = 7 in the vicinity of Racr .

Partially, the motivation for the study presented in this Letter is
to clarify whether stable motion in an internally heated layer can
exist in the form of up- and down-hexagons depending on Prandtl
number. We study the effect of Rayleigh number, Prandtl number,
and strength of internal heating on the convection onset, evolution
of the flow structure and planform selection, transitions between
the conducting state, roll flow and hexagonal flow with different
directions of circulation in the cells.

2. Problem statement

The study is based on the 3D time-dependent Navier–Stokes
equations in the Boussinesq approximation, the equation of con-
tinuity and the equation for temperature with a uniform heat
source. The calculation domain is a rectangular box of height H
and square in the horizontal direction Ω = [0, l] × [0, l] × [0, H].
The aspect ratio is L = l/H = 15. All boundaries of the box are
rigid, the vertical walls are perfectly insulated, and the upper and
lower boundaries are maintained at constant temperature Ttop and
Tbot , Ttop < Tbot .

For a non-dimensional description, the length is scaled with
the height H , tν = H2/ν and ρ0νχ/H2 are used as units of
time and pressure, respectively, and ρ0 is the liquid density at
temperature Ttop . Non-dimensional temperature is introduced as
T = (Td − Ttop)/δT , Td is the dimensional temperature.

The governing equations in dimensionless form are written as
[7, p. 18]:

∂tV + (V · ∇)V = −∇p + �V + Ra

Pr
T ez, (1)

∇ · V = 0, (2)

∂t T + (V · ∇)T = 1

Pr
�T + q. (3)

Here ∂ξ ≡ ∂
∂ξ

, ξ = t, x, y, z, ∇ = (∂x, ∂y, ∂z), � = ∇2 = ∂2
xx + ∂2

yy +
∂2

zz , (x, y, z) ∈ Ω , Ω = [0, L] × [0, L] × [0,1], t denotes the time,
V = (Vx,Vy,Vz) the velocity, p the pressure, T the temperature,
ez = (0,0,1), q the heat source.

The basic state of pure conduction is described by the velocity
V = 0 and the temperature distribution T0(z) = 1 − z + z(1 − z)q/2,
where q = q Pr (Fig. 1).
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