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We show that, in the theory of extended thermodynamics, rarefied monatomic gases can be identified
as a singular limit of rarefied polyatomic gases. Under naturally conditioned initial data we prove that
the system of 14 field equations for polyatomic gases in the limit has the same solutions as those of the
system of 13 field equations for monatomic gases where there exists no dynamic pressure. We study two
illustrative examples in the process of the limit, that is, the linear waves and the shock waves in order
to grasp the asymptotic behavior of the physical quantities, in particular, of the dynamic pressure.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction and the statement of the problem

The applicability range of extended thermodynamics (ET) [1] is
wider than that of thermodynamics of irreversible processes [2]
basing on the local equilibrium assumption. On the other hand,
however, ET of gases had been valid mainly for rarefied monatomic
gases.

The prototype of ET corresponds to the kinetic moment theory
by Grad [3], and it describes 13 independent fields, i.e., the mass
density F , the momentum density Fi , the momentum flux Fij and
the energy flux Flli satisfying the balance equations of the follow-
ing type

∂ F

∂t
+ ∂ Fk

∂xk
= 0,

∂ Fi

∂t
+ ∂ Fik

∂xk
= 0,
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∂ Fij

∂t
+ ∂ Fijk

∂xk
= P 〈i j〉,

∂ Flli

∂t
+ ∂ Fllik

∂xk
= Plli, (1)

where Fijk and Fllik are the fluxes of Fij and Flli , respectively, and
P 〈i j〉 and Plli are the productions of Fij and Flli , respectively. Here
the angular brackets such as P 〈i j〉 indicate that the corresponding
tensor is a deviatoric (symmetric traceless) one. As the first five
equations in the system (1) express the conservation laws of mass,
momentum and energy, we have the relations

F = ρ, Fi = ρvi, Fij = ρvi v j − ti j,

Fll = ρv2 + 2ρε, Flli = ρv2 vi − 2til vl + 2qi, (2)

with the mass density ρ , the velocity vi , the specific internal en-
ergy ε, the heat flux qi , and the stress ti j :

ti j = −(p + Π)δi j + S〈i j〉, (3)

where p is the equilibrium pressure depending on ρ and ε, while
Π and S〈i j〉 are, respectively, the dynamic pressure (nonequilib-
rium pressure) and the deviatoric shear stress.

In the hierarchy structure of the system (1), we notice two pe-
culiarities: (i) the tensorial orders of the equations increase one by
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one, and (ii) the flux of an equation becomes the density of the
next equation. As a consequence, the trace of the momentum flux
must be equal to the energy density. This implies that

3(p + Π) = 2ρε. (4)

Then, as Π is a nonequilibrium quantity, we conclude that

3p = 2ρε, Π = 0. (5)

In order to close the system (1) with respect to the indepen-
dent variables ρ , vi , ε, S〈i j〉 and qi , the Grad approach [3] adopts
a perturbative method derived from the kinetic theory, while ET
adopts the constitutive equations restricted by the universal princi-
ples (Entropy principle, Objectivity and Convexity) [1]. Moreover the
maximum entropy principle (MEP) [4] has also been utilized as a
method of the closure in the case of 13 equations and generalized
cases with many moments in [5]. The equivalence of MEP and the
method of ET was proved [6].

Recently the present authors have proposed an ET theory of
dense gases [7,8], where rarefied gases are included as a special
case. The theory is applicable, in particular, to polyatomic gases.
The system of balance equations adopted in the theory has the
binary hierarchy structure

∂ F

∂t
+ ∂ Fk

∂xk
= 0,

∂ Fi

∂t
+ ∂ Fik

∂xk
= 0,

∂ Fij

∂t
+ ∂ Fijk

∂xk
= Pij,

∂Gll

∂t
+ ∂Giik

∂xk
= 0,

∂Glli

∂t
+ ∂Gllik

∂xk
= Q lli, (6)

where Gll is the energy density, Glli is the energy flux, Gllik is the
flux of Glli , and Q lli is the production of Glli . The equations for
the densities F , Fi and Gll express the conservation laws of mass,
momentum and energy, respectively. Therefore we have the rela-
tions

F = ρ, Fi = ρvi, Fij = ρvi v j − ti j,

Gll = ρv2 + 2ρε, Glli = ρv2 vi − 2til vl + 2qi . (7)

Now the number of the equations is 14 because there exists the
dynamic pressure, which is absent in rarefied monatomic gases.
This is the reason why the relations (5) are no more valid, and the
trace of the momentum flux Fll and the energy density Gll play
different roles to each other. By the method of closure in ET, we
obtain the closed system of equations with the independent vari-
ables: ρ , vi , ε, Π , S〈i j〉 and qi .

The new 14-field theory is more appropriate than the previous
works [9–14] because the constitutive equations are completely
determined by the thermal and caloric equations of state together
with the experimental data on the viscosities and the heat con-
ductivity. Moreover the classical Navier–Stokes–Fourier model can
be regarded as a particular model derived from this theory via the
Maxwellian iteration [15]. The theory has also a firm mathematical
background because the system is symmetric hyperbolic.

The new theory is now applied to rarefied polyatomic gases
with the equations of state

p = kB

m
ρT , ε = D

2

p

ρ
(D = 3 + f ) (8)

where T , kB and m are the temperature, the Boltzmann constant
and the mass of a molecule, respectively. Here D is the degrees of
freedom of a molecule given by the sum of the space dimension 3

for the translational motion and the internal degrees of freedom f
(� 0). For monatomic gases, D = 3.

The system of balance equations for rarefied polyatomic gases
with the thermal and caloric equations of state (8) is explicitly ex-
pressed as follows, where D is assumed to be constant [7]

∂ρ

∂t
+ ∂ρvk

∂xk
= 0,

ρ
∂vi

∂t
+ ρvk

∂vi

∂xk
+ ∂ p

∂xi
+ ∂Π

∂xi
− ∂ S〈i j〉

∂x j
= 0,

D

2

kB

m
ρ

(
∂T

∂t
+ vk

∂T

∂xk

)
+ ∂qk

∂xk

+ (
(p + Π)δik − S〈ik〉

)∂vi

∂xk
= 0,

∂ S〈i j〉
∂t

+ vk
∂ S〈i j〉
∂xk

− 2p
∂v〈i

∂x j〉
+ S〈i j〉

∂vk

∂xk
− 2Π

∂v〈i

∂x j〉

+ 2
∂v〈i

∂xk
S〈 j〉k〉 − 4

D + 2

∂q〈i

∂x j〉
= − 1

τS
S〈i j〉,

∂Π

∂t
+ vk

∂Π

∂xk
+ 2(D − 3)

3D
p

∂vk

∂xk
+ 5D − 6

3D
Π

∂vk

∂xk

− 2(D − 3)

3D

∂v〈i

∂xk〉
S〈ik〉 + 4(D − 3)

3D(D + 2)

∂qk

∂xk
= − 1

τΠ

Π,

∂qi

∂t
+ vk

∂qi

∂xk
+ D + 4

D + 2
qi

∂vk

∂xk
+ 2

D + 2
qk

∂vk

∂xi

+ D + 4

D + 2
qk

∂vi

∂xk
− kB

m

T

ρ
(Πδki − S〈ki〉)

∂ρ

∂xk

+ D + 2

2

kB

m

(
(p + Π)δki − S〈ki〉

) ∂T

∂xk

+ 1

ρ

(
(p − Π)δki + S〈ki〉

)(∂Π

∂xk
− ∂ S〈kl〉

∂xl

)
= − 1

τq
qi, (9)

where the relaxation times τS , τΠ and τq are positive functions
of ρ and T .

The 14-field theory (9) was proved to be fully consistent with
the kinetic theory using the method of MEP [16]. Moreover, from
the studies of linear waves, the validity of the theory was con-
firmed by the consistency between the theoretical predictions and
the experimental data [17].

The point that is not completely clarified in the theory until
now is the limiting process from polyatomic to monatomic rarefied
gases when we let D approach 3 from above, where D is assumed
to be a continuous variable. The limit is singular in the sense that
the system for rarefied polyatomic gases with 14 independent vari-
ables seems to converge to the system with only 13 independent
variables for rarefied monatomic gases.

The singularity can be seen also by the inequalities required
for the symmetric hyperbolicity in equilibrium. This requirement is
always satisfied in the 13-field theory of monatomic gases, while,
in the present 14-field theory, it is expressed by the inequality
D > 3 [7]. The condition is obviously satisfied only for polyatomic
gases with D > 3, and the case of monatomic gases with D = 3 is
not admissible. Therefore only the limit of D toward 3 from above
is meaningful.

The purpose of the present Letter is to clarify the singular limit.
In Section 2, we will study the system of basic equations (9) in the
limit D → 3. We will see that a solution of (9) converges to the
corresponding solution of (1) under the naturally conditioned ini-
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