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The Gravity Probe B experiment cannot sense spacetime torsion:
on the Poincaré gauge theory of gravity and its equations of motion
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We discuss the structure of the Poincaré gauge theory of gravity (PG) that can be considered as the
standard theory of gravity with torsion. We reconfirm that torsion, in the context of PG, couples only to
the elementary particle spin and under no circumstances to the orbital angular momentum of test particles.
We conclude that, unfortunately, the investigations of Mao et al. (2007) and March et al. (2011)—who
claimed a coupling of torsion to orbital angular momentum, in particular in the context of the Gravity
Probe B experiment—do not yield any information on torsion.

© 2013 Published by Elsevier B.V.

1. Introduction

Ever since E. Cartan in the 1920s enriched the geometric frame-
work of general relativity (GR) by introducing a torsion of space-
time, the question arose whether one could find a measurement
technique for detecting the presence of a torsion field. Mao et al.
[1] claimed that the rotating quartz balls in the gyroscopes of the
Gravity Probe B experiment [2], falling freely on an orbit around
the Earth, should “feel” the torsion. Similarly, March et al. [3] ar-
gue with the precession of the Moon and the Mercury and extend
later their considerations to the Lageos satellite.

A consistent theory of gravity with torsion emerged during the
early 1960s as gauge theory of the Poincaré group, see the review
in [4]. This Poincaré gauge theory of gravity incorporates as sim-
plest viable cases the Einstein–Cartan(–Sciama–Kibble) theory (EC),
the teleparallel equivalent GR|| of GR, and GR itself. So far, PG and,
in particular, the existence of torsion have not been experimen-
tally confirmed. However, PG is to be considered as the standard
theory of gravity with torsion because of its very convincing gauge
structure.
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Since the early 1970s up to today, different groups have shown
more or less independently that torsion couples only to the el-
ementary particle spin and under no circumstances to the orbital
angular momentum of test particles. This is established knowl-
edge and we reconfirm this conclusion by discussing the energy–
momentum law of PG, which has same form for all versions of
PG. Therefore, we conclude that, unfortunately, the investigations
of Mao et al. and March et al. do not yield any information on
torsion.

2. Torsion defined, spin of matter introduced

Einstein’s theory of gravitation, general relativity (GR), was fi-
nally formulated in 1916. Already since this time, mathematicians
and physicists, namely Hessenberg, Levi-Civita, Weyl, Schouten,
and Eddington, amongst others, started to develop the geometrical
concept of a (linear) connection Γ . This is a tool for the paral-
lel displacement of vectors in a differential manifold, in particular
in 4-dimensional spacetime. The final formulation of the connec-
tion was given by E. Cartan in 1923/24. He defined the connection
1-form Γα

β = Γiα
β dxi as a new fundamental geometrical object

(with α,β, . . . as frame and i, j, . . . as coordinate indices, both run-
ning from 0 to 3); for the explicit references and for the formalism,
including the conventions, compare [4], pp. 17–21.

If the connection is expressed purely in coordinate components,
then the antisymmetric part of it is a tensor, Cartan’s torsion ten-
sor,
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Tij
k = Γi j

k − Γ ji
k ≡ 2Γ[i j]k = −T ji

k, (1)

with its 24 independent components. This is the tensor alluded to
in the title of our Letter. Mao et al. [1] wanted to sense torsion by
using the results of the Gravity Probe B experiment of Everitt et al.
[2]; later, March et al. [3] tried to do the same thing by using data
of the Moon, of the Mercury, and of the Lageos satellite. We will
come back to this issue later.

In GR, the Riemannian connection is represented by the
Christoffel symbols Γ̃i j

k := 1
2 gkl(∂i g jl + ∂ j gli − ∂l gi j), where gij are

the components of the metric tensor and ∂i := ∂/∂xi . The Rieman-
nian connection is symmetric, it is torsion-free, that is, T̃ i j

k = 0.
Massive test particles in GR move along the geodesics of the Rie-
mannian connection:

d2xk

dτ 2
+ Γ̃i j

k dxi

dτ

dx j

dτ
= 0. (2)

When Cartan extended the geometrical framework of GR by in-
troducing a torsion of spacetime, he was conscious of the fact that
he also had to use a more fine-grained description of matter than
in GR. Instead of a classical fluid, acting via a symmetric energy–
momentum density t, he suggested a Cosserat type fluid with an
asymmetric energy–momentum density T and an intrinsic or spin
angular momentum density S, see [4], pages 21 and 103.

This conception has been developed even before the spin of the
electron was discovered. We recognize that the introduction of the
geometrical concept of a torsion goes hand in hand with ascribing
to matter, besides an energy–momentum density, a further dynam-
ical characteristics, namely a spin angular momentum density. In a
general-relativistic theory of gravity, torsion and spin are interde-
pendent.

This interdependence was clear to Cartan. However, because of
an unfounded assumption, see Section 7, he was not able to for-
mulate a consistent theory of gravity with torsion.

3. Poincaré gauge theory as standard torsion theory

In the early 1960s, a consistent framework for a valid physical
theory of torsion was initiated by Sciama [5] and Kibble [6]. It was
conceived as a gauge theory of the Poincaré group [6], the semi-
direct product of the translations (4 parameters) and the Lorentz
rotations (6 parameters). In Minkowski spacetime, the Poincaré
group acts rigidly (“globally”). By means of the gauge procedure à
la Weyl–Yang–Mills, the Poincaré group is “localized”, acts merely
locally. This is made possible by introducing 4 gauge potentials for
the translations and 6 gauge potentials for the Lorentz rotations.
The emerging theory is called Poincaré gauge theory of gravitation
(PG), see [4], Part B for details.

The arena of the PG is a Riemann–Cartan (RC) spacetime. It is de-
termined by a metric gαβ (and its reciprocal gγ δ), an orthonormal
coframe ϑα = ei

α dxi , and a Lorentz connection Γ αβ := gαγ Γγ
β =

−Γ βα = Γi
αβ dxi . Having such a connection, we can define a co-

variant exterior derivative D . For a RC-space, we find Dgαβ = 0
(vanishing nonmetricity).

The coframe ϑα can be understood as translational gauge po-
tential and the Lorentz connection Γ αβ = −Γ βα as rotational
gauge potential. The corresponding gravitational field strengths are
torsion and curvature, respectively, which we find by differentia-
tion of the corresponding potentials:

T α := Dϑα = dϑα + Γβ
α ∧ ϑβ, (3)

Rαβ := dΓ αβ − Γ αγ ∧ Γγ
β = −Rβα. (4)

Note that in the term Γβ
α ∧ ϑβ of (3) the rotations and trans-

lation mix algebraically, due to the semi-direct product structure.
Hence it has to be taken with a grain of salt that T α is called

Fig. 1. A Riemann–Cartan space U4 with torsion T and curvature R and its different
limits (nonmetricity vanishes: Q αβ := −Dgαβ = 0), see [4], p. 174.

the translation field strength. In (4), the second term on the right-
hand side −Γ αγ ∧ Γγ

β is due to the non-commutative structure
of the Lorentz rotations: they form a non-Abelian sub-algebra of
the Poincaré algebra.

The different limits of a RC space are represented in Fig. 1. GR
takes place in a V 4, PG in a U4, GR|| in a T4, and, when gravity
can be neglected, we are in an M4.

The definition (3) of the torsion, written with respect to co-
ordinates, degenerates to (1). Moreover, the explicit form of the
Lorentz connection, spelled out in coordinate indices, is Γi j

k =
Γ̃i j

k − Kij
k , with the contortion tensor

Kij
k = −1

2

(
Tij

k − T j
k

i + T k
i j
) = −Ki

k
j . (5)

So much about the geometry of the PG.
The physics of the PG is determined by a Lagrange 4-form

L = V
(

gαβ,ϑα, T α, Rαβ
) + Lmat

(
gαβ,ϑα,Ψ, DΨ

)
. (6)

V is the gravitational gauge part of the Lagrangian, depending on
the geometrical field variables, Lmat is the matter Lagrangian de-
pending on some minimally coupled matter fields Ψ (x), a Dirac
field, for example. For special considerations referring to nonmini-
mal coupling, compare Section 8.

By varying with respect to the gauge potentials (δ denotes a
variation), we can read off the sources in the field equations of the
PG as

Tα = δLmat

δϑα
and Sαβ = δLmat

δΓ αβ
= −Sβα, (7)

respectively. They turn out to be the canonical 3-forms of energy–
momentum Tα and of spin angular momentum Sαβ of matter.1

We postpone the discussion of the explicit form of the gravita-
tional Lagrangian V since this is not necessary for the understand-
ing of the equations of motion of test particles in PG. We will only
use it later in order to see that PG embodies viable gravitational
theories, namely GR, Einstein–Cartan theory, and the teleparallel
equivalent of GR.

4. How does one measure torsion of spacetime?

We have now a general idea how a PG looks like. We recognize
that PG is a straightforward extension of GR, and we wonder, how
a test particle moves in a spacetime with torsion.

Clearly, we will take recourse to the established methods of
GR. GR is the only theory of nature in which the motion of a test

1 They translate into the corresponding quantities of tensor analysis as follows:
Tα = Tα

βεβ and Sαβ = Sαβ
γ εγ , with the 3-form density εa := eα�ε , the frame

eα , and the volume 4-form density ε . In the reverse order, we have ϑβ ∧Tα = εTα
β

and ϑγ ∧Sαβ = εSαβ
γ .
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