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A set of simplified and rigorous electromagnetic vector theories is used for analyzing the transmittance
characteristics of diffraction phase gratings. The scalar diffraction theory and the effective medium theory
are validated with the exact results obtained via the rigorous coupled-wave theory and the finite-
difference time-domain method. The effects of surface profile parameters and also the angle of incidence
is demonstrated to be a limiting factor in the accuracy of these theories. Therefore, the error of both
simplified theories is also analyzed in non-paraxial domain with the intention of establishing a specific
range of validity for both simplified theories.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Dielectric binary gratings are of wide interest owing to their
many applications in polarization systems [1], solar energy [2,3],
ultrafast optics [4], displays [5] and coherence [6]. Several investi-
gators have analyzed the grating properties in the frame of scalar
optics [7,8]. Simplified theories are commonly used and are at-
tractive in the design and analysis of Diffractive Optical Elements
(DOEs) because of their simplicity and low computational inten-
sity [9,10]. Nevertheless, thanks to the spectacular improvements
in grating manufacturing in the middle of the century due to
the use of interferometry in association with servo-control sys-
tems [11,12], it becomes possible to achieve high quality gratings
with more than 1000 lines/mm [13]. Here, the groove spacing and
the wavelength became of the same order of magnitude and it has
been demonstrated that exists a clear influence of the polarization
on the efficiency curves.

The accuracy of the Scalar Diffraction Theory (SDT) has been
previously compared to the Rigorous Coupled-Wave (RCW) theory
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in the works by Pommet et al. [14], Glytsis et al. [15] and also for
perfectly conducting gratings in [16] among others. Regarding di-
electric DOEs, the reliability of SDT results for the zeroth and first
diffraction orders has been analyzed as a function of the normal-
ized thickness (h/λ) in a specific range for different periods, and
illumination schemes. In the area of the Effective Medium Theory
(EMT) there are papers that compare EMT with the RCWA on many
types of dielectric and metallic gratings such as [17–19].

Recently, Jing et al. [20,21] presented a deep analysis of the
accuracy of both SDT and EMT for analyzing the transmittance
characteristics of diffraction phase and sinusoidal gratings at nor-
mal incidence. The results derived from [20] concluded that SDT
can accurately estimate the diffraction efficiency, even with peri-
ods of two wavelengths (Λ/λ = 2) and under several conditions.
Regarding EMT, it is demonstrated that its precision is quite good
for high spatial frequency gratings (0.1 � Λ/λ � 0.6). Neverthe-
less, the effect of the angle of incidence in the accuracy of these
two simplified theories applied to binary phase gratings for a wide
range of depths and grating periods has not been reported yet.

In this Letter, the Rigorous Coupled-Wave (RCW) approach with
the finite difference time-domain (FDTD) method, both belonging
to the rigorous electromagnetic vector theories, are used here as
reference in order to analyze the behavior of the simplified the-
ories also considering arbitrary angle of incidence. Through the
comparison of the transmission efficiencies predicted by SDT and
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Fig. 1. Schematic diagram of diffraction phase grating.

EMT, with those calculated with RCW and FDTD, the limitations of
simplified theories is fully determined considering the effect of the
normalized period and depth and also the angle of incidence. For
the RCW approach, the influence of the number of harmonics con-
sidered in the Fourier series of the contour has also been consid-
ered. Because of that, FDTD has been also implemented in order to
avoid this effect in the results. FDTD is a numerical method based
on a discretization of the simulation region [22]. This discretiza-
tion implies some limitation when periodic media is considered.
These aspects have been covered in [23–26] for instance. However,
in this work an specific formalism of FDTD for periodic media has
been considered. More specifically, the split-field FDTD has been
implemented in order to limit the simulation size to a single pe-
riod of the periodic element under analysis [27–29]. The spatial
and time resolution have been chosen in order to avoid numerical
instabilities with a wide decision margin. This aspect also per-
mits to accurately describe the grating structures ensuring that
results provided by FDTD are rigorous and precise. This implies
greater simulation sizes and also more time steps for achieving
steady-state. However, a Graphics Processing Units (GPUs) based
implementation give us the opportunity to simulate in less time
problems that would be unaffordable with conventional program-
ming solutions [30,31].

To illustrate the range of validity of the simplified theories, the
diffraction characteristics in transmission of binary phase gratings
and their error are computed for a wide range depth and period
and also for different values of the fill factor. Although the error
obtained with SDT in paraxial domain is small, it grows as the
gratings goes into volume region. This trend increases as the angle
of incidence becomes greater, thus reducing the range of operation
of this theory even with periods of five wavelengths. Regarding
EMT, its accuracy is demonstrated to be more homogenous in non-
paraxial domain being the best case at normal incidence and only
when the zero-order wave exists. The accuracy of these theories
and also the effect of the harmonics in the RCW are discussed in
detail in the final section.

2. Theory

2.1. Scalar diffraction theory

In Fig. 1, Λ and h represent the period and groove depth,
respectively, and n0 and ng are the refractive indices of the in-
cident medium and the grating. The light wave propagates from
air (n0 = 1.00) through the surface into the substrate material
(ng = 1.50). The diffraction efficiency of SDT can be calculated by
using the scalar Kirchhoff diffraction theory, which neglects the
vectorial and polarized nature of light. This theory provides rea-
sonably accurate results when the periodicity of the surface profile
is much larger than the wavelength of the incident light [20,21].
Specifically, when Λ/λ � 20, physical optics according to Fresnel
and Snell’s laws can explain the behavior of the diffraction effi-
ciency of these optical elements [20,32]. This simplified theory is
based on the general equation for diffraction efficiency η in scalar
approximation for a periodic structure as [33,20].

η =
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where t(x) is a function defined as the ratio of transmitted (or
reflected) and incident wave amplitudes at location x, and m is the
diffracted order. Taking into account (1) and the geometry of the
problem detailed in Fig. 1, the diffraction efficiencies for the zero
and first order can be easily derived [20,33]
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with θ0 being the angle of incidence. The rays inside the grat-
ing have an angle respect to the x axes θg that can be obtained
via Snell’s Law. The Fresnel transmission coefficient is included by
means of τ (θ0), and �ϕ = 2πh/λ(ng cos θg −n0 cos θ0) is the phase
difference between two parallel rays incident on the grating at an
angle θ0 [20].

2.2. Effective medium theory

EMT considers a subwavelength grating as an anisotropic op-
tical thin film with effective refractive indices. These indices are
obtained from series expansions of transcendental functions, in
terms of Λ/λ [34]. Here, the zeroth-order and the second-order
EMT are used to predict the diffraction efficiencies compared with
the results calculated by the RCWT and FDTD.
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To apply EMT, the diffraction grating shown in Fig. 1 can be ap-
proximated by a stack of homogenous layers. This layer is defined
by a characteristic matrix.[
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where B = Ea/E g and C = Ha/H g are the ratios between the elec-
tric and magnetic fields at the front (a) and the substrate material
(g) interfaces [35], δr = 2πhn(r)TE cos θr/Nλ is the phase of the rth
layer, n(r)TE represents the effective index of refraction of the rth
layer and ηr = η0n(r)TE cos θr for TE polarization, η0 is the optical
admittance in free space (η0 = √

ε0μ0 ), and ηg is the optical ad-
mittance in the substrate material. As detailed above, the angles θr

can be calculated from Snell’s Law.

2.3. Rigorous coupled-wave theory

In order to understand how light propagates inside a periodic
medium, many numerical methods have been developed, such as
the modal theory, first proposed by Wang and Tamir et al. [36–38]
and applied to holography by Burkhardt [39], or the coupled-wave
theory [40,41]. CWT proposed by Kogelnik [42] predicts very accu-
rately the response of the efficiency of the first and second order
for volume phase gratings. Nonetheless, the accuracy decreases
when more than two orders are present in the grating. The rig-
orous coupled-wave theory doesn’t disregard second derivatives in
the CW equations and allow more than two orders. The RCW in-
troduced by Moharam and Gaylord has accomplished the task of
explaining a great number of physical situations associated with
diffraction gratings of different kinds [43–46]. Since the RCW is
well known only a brief description is given here.

We will study the propagation of light inside binary phase grat-
ings. In all cases the conductivity inside the grating is supposed to
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