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We present an extension of a novel method for understanding complex systems, which has been
applied to non-equilibrium systems both in and out of detailed balance. For the non-detailed balance
case, in which non-zero currents are a principal indicator of complexity, there has been an incomplete
understanding of the distance function in the observable representation embedding. To deal with this
we construct a new transition matrix by accounting for this current and compute the eigenvalues and
eigenvectors. From these, we define a metric whose distance provides a useful measure of the relation
among variables. Use of this method provides insights into long-range correlation, and chaotic properties.
As an example we show that these distances can be used to control chaos in a simple dynamical system.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Natural systems that come under the (often vague) heading
of complex, are typically far from equilibrium, involve many de-
grees of freedom, exhibit irreversibility, do not satisfy detailed bal-
ance, and are not described by traditional Boltzmann–Gibbs statis-
tics (properties that are not independent of one another). Exam-
ples include neural networks [10], gene activity [2], and turbulent
flows [1,12]. A special class of complex systems has already been
extensively studied in the past. These systems can have their slow
variables differentiated from those changing rapidly when there
is scale separation in time and/or space. In these cases analyt-
ical progress can be made for example by using the projection
method [3].

A recently developed technique that does not assume this scale
separation and has been used in the study of dynamical systems is
to use a graphical representation that implicitly reflects dynamical
correlations in phase space [6]. This is done by using a subset of
“macroscopic observables” obtained by calculating transition prob-
abilities from the dynamics of the system. The metric distance in
this representation is a direct measure of correlation, and is use-
ful in understanding the dynamics of the system without detailed
knowledge of the complex interactions among all of the underlying

* Corresponding author. Tel.: +44 07794023712.
E-mail address: smp11sbn@sheffield.ac.uk (S.B. Nicholson).

constituents. This is called the Observable Representation (OR) and
is an example of a spectral method.

Spectral methods to aid visualization and highlight relation-
ships are used both in spectral graph theory [13] and the OR [9]
(see [9] for a comparison; see [4] for the continuous case). The
OR was originally developed to understand non-equilibrium phase
transitions, [5,6]. It has been applied to several examples, including
spin glasses [17], coarse graining models [7], and the reconstruc-
tion of coordinate spaces [9]. In this Letter we present a new
framework, called the Non-detailed balance Observable Represen-
tation (NOR), which allows the study of non-detailed balance sys-
tems. To explain the NOR we first briefly recall the framework of
the OR (the NOR’s detailed balance version).

States of the system are given by x, y ∈ X, where X is a space
of cardinality N < ∞. We represent the transition probabilities be-
tween two states x and y as Rxy , where

Rxy = Pr(x ← y)

= Pr
[
state at (t + 1) is x

∣∣ state at t is y
]
. (1)

Assuming R to be irreducible leads to a unique eigenvalue λ0 = 1
with eigenvector p0(x). p0(x) is strictly positive and satisfies∑

y Rxy p0(y) = p0(x), with
∑

x p0(x) = 1. There are several other
requirements on Rxy ; the first is the conservation of total proba-
bility

∑
x Rxy = 1. Second, we assume Rxy is diagonalizable. We ar-

range the eigenvalues in order of decreasing magnitude, 1 = λ0 �
|λ1| � |λ2| � · · · � |λN |. The eigenvectors corresponding to each
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eigenvalue are ordered accordingly. The left and right eigenvectors
of Rxy are defined as
∑

x

Aα(x)Rxy = λα Aα(y),
∑

y

Rxy pα(y) = λα pα(x). (2)

Here the subscript denotes the column index, and the argument
denotes the row index. The slowest decaying left eigenfunctions of
Rxy will be the macroscopic “observables” which characterize the
system on the macroscale of interest. (See [7] for elaboration on
this terminology.) The faster decaying eigenvectors are the rapidly
fluctuating quantities of the system, which average to zero over
the macroscale. It follows from the form of Rxy that there is a left
eigenvector, A0 = 1, such that A0 R = A0. We normalize the eigen-
functions A j and pk to form an orthonormal basis, 〈A j|pk〉 = δ jk .

It was shown in [9] that for the detailed balance case using
the left eigenvectors, there is an inequality between a metric intu-
itively related to the state-to-state dynamics (the left-hand side of
Eq. (3)) and a natural metric in the OR (on the right) as

∑
x

∣∣∣∣
Rxi − Rxj√

p0(x)

∣∣∣∣ �
√√√√ m∑

α

∣∣λα

(
Aα(i) − Aα( j)

)∣∣2
. (3)

Here m is the dimension of the OR, where m � N . Aα(i) is the α
element in the m-tuple corresponding to the ith point in the OR.
The appropriate value of m is typically given by a spectral gap
in the eigenvalues, when λm+1 	 λm [4,7]. If the system does
not exhibit a spectral gap, it may be necessary to consider more
dimensions than is feasible to faithfully represent the system.
As remarked, for the inequality (3) to hold, Rxy must also sat-
isfy detailed balance, which is equivalent to the currents’ vanishing
(no summation over x or y),

J xy = Rxy p0(y) − R yx p0(x) = 0. (4)

The crux of the derivation of Eq. (3) is the existence of a complete
set of eigenvalues and orthogonal eigenvectors of a symmetric ma-
trix Sxy = 1√

p0(x)
Rxy

√
p0(y).

The purpose of this Letter is to generalize Eq. (3) when J xy 
= 0.
When J xy 
= 0, the symmetric property of Sxy based on Rxy no
longer holds. It was shown in [7] that even when J xy 
= 0 the
first few eigenvectors and eigenvalues could be used to find the
phases of simple systems. As J xy grows or the complexity of the
system increases, Aα no longer gives an accurate representation of
the system. As a result Eq. (3) fails and we need an extension to
the theory. To be able to use the idea of relating distances in a
coordinate space to the original dynamical system, i.e. by Eq. (3),
when J xy 
= 0, we propose a new matrix Bxy ,

Bxy = Rxy − J xy

2p0(y)
. (5)

Here Bxy is an N × N matrix which is column-wise stochas-
tic. This is due to the fact that J xy follows Kirchoff’s loop rule:
net current into a node equals net current out. One can show
that if Rxy is irreducible then Bxy is irreducible. Writing Bxy as

Bxy = Rxy
2 + R yx p0(x)

2p0(y)
. It is clear that by adding a non-negative term

to Rxy , Bxy must also be irreducible. Interestingly, it can also be
shown that Rxy and Bxy share the same unique stationary distri-
bution, p0(x). It is also true that Bxy has one eigenvalue of unity,
ν0 = 1. We list the remaining eigenvalues in decreasing order:
ν0 � |ν1| � · · · � |νN |. The right and left eigenvectors of Bxy are
similarly defined as

Bxyϕα(y) = ναϕα(x), Γα(x)Bxy = ναΓα(y). (6)

The completeness of the eigenfunctions for Bxy , Eq. (5), is guar-
anteed by the fact that Bxy can be transformed into a symmetric

matrix Sxy , by a similarity transform, even when the system does
not satisfy detailed balance. To demonstrate this, we define

Sxy = 1√
p0(x)

Bxy

√
p0(y). (7)

It is straightforward to verify that S is symmetric. Note that the
eigenvectors ψα(x) of Sxy are related to the eigenvectors of Bxy as
follows:

ϕα(x)√
p0(x)

= ψα(x), Γα(x)
√

p0(x) = ψα(x). (8)

Given that
√

p0(x) � 0 and that Eq. (8) is a one to one relationship
between the real eigenvectors and eigenvalues of Sxy we have a
guarantee that the eigenvectors and eigenvalues of Bxy will also
be real. The matrix Bxy is reminiscent of the inverse construction
in [8]. It turns out that the distance computed from the left eigen-
vectors of Bxy based on Sxy gives a physically meaningful distance,
for example correlations, by removing the contribution from the
anti-symmetric part which includes oscillating transition probabil-
ities and rotation in the phase space. For a more in depth discus-
sion of the symmetric anti-symmetric properties see [16]. Using
Sxy and the left eigenvectors of Bxy , we construct the non-detailed
balance version of the OR, which we denote the (NOR). Specifically
we can also construct a distance metric by replacing λα by να and
Aα(i) by Γα(i) in Eq. (3), so that one now has the inequality,

∑
x

∣∣∣∣
Bxi − Bxj√

p0(x)

∣∣∣∣ �
√√√√ m∑

α

∣∣να

(
Γα(i) − Γα( j)

)∣∣2
. (9)

This metric whose right-hand side we designate DNOR, quantifies
the correlation between the macroscopic states of the system and
its underlying dynamics when the system does not satisfy de-
tailed balance. It provides an intuitive and quantitative basis for
the embedding induced by the NOR for Bxy , just as Eq. (3) does
for detailed balance situations. Eq. (9) provides a dynamical basis
for the study of non-detailed balance systems.

To illustrate that the DNOR gives a correct measure of the cor-
relation among different elements of X , we consider the logistic
map which is a simple irreversible system due to its strong cur-
rents (i.e., J xy 
= 0, in Eq. (4)). Note, that although the logistic map
has an infinite number of states, we will shortly show that a finite
coarse grained approximation of these states is enough to control
the system. DNOR is computed by following an ensemble of differ-
ent orbits, which are the corresponding constituents in this case.
We show how using these orbits, DNOR can be usefully exploited
to eliminate chaos in the system.

2. Application of NOR on the logistic map

The logistic map is defined as

xn+1 = M(xn) = axn(1 − xn), (10)

in [0,1]. Here, a is the control parameter. We consider the irre-
versible chaotic case by choosing a = 4, which results in a positive
Lyapunov exponent L. For this mapping (Eq. (10)), the Lyapunov
exponent is given as

L = 1

n

n∑
i=1

li,

li = log
∣∣Ω ′(xi)

∣∣, (11)

where n is the nth iteration or time step of the map and Ω ′(xi)

is the derivative of the map at point xi , 1 � i � n. li is the local
contribution to L at each time step. We spread M initial positions
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