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We analyze the tunneling of a particle through a repulsive potential resulting from an inverted harmonic
oscillator in the quantum mechanical phase space described by the Wigner function. In particular, we
solve the partial differential equations in phase space determining the Wigner function of an energy
eigenstate of the inverted oscillator. The reflection or transmission coefficients R or T are then given by
the total weight of all classical phase-space trajectories corresponding to energies below, or above the
top of the barrier given by the Wigner function.
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1. Introduction

Tunneling [1] of a particle through a barrier is one of the strik-
ing phenomena of quantum mechanics [2]. In the special case of a
repulsive quadratic potential, corresponding for example to an in-
verted harmonic oscillator [3] shown in Fig. 1(a), the transmission
coefficient T takes the form [4]

T = 1

1 + e−2πε
, (1)

depicted in Fig. 1(b). Here ε ≡ E/(h̄Ω) is the scaled energy which
is the ratio of the eigenvalue E and the natural energy parame-
ter h̄Ω , where Ω is the steepness of the quadratic barrier and h̄
denotes the Planck constant divided by 2π .

The expression Eq. (1) has played a crucial role in the context of
nuclear fission [5]. It usually emerges [5] from a semiclassical anal-
ysis [6,7] of the Schrödinger equation of the inverted harmonic os-
cillator [3]. However, in the present Letter we rederive Eq. (1) from
quantum phase space using the Wigner distribution function [8]. In
particular, we show that Eq. (1) corresponds to the quantum me-
chanical weight of all classical trajectories [9] that have sufficient
energy to go above the barrier.

This result is counterintuitive since in the standard formula-
tion [2] of quantum mechanics à la Heisenberg and Schrödinger an
energy eigenstate does not contain energies other than the eigen-
value. In contrast, the Wigner function [8] of such a state relies on
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the trajectories of all energies, however with positive or negative
weights. Hence, the goal is to find these weights.

For this purpose we recall that two partial differential equa-
tions in phase space [10,11] determine the Wigner function of an
energy eigenstate. They result from the commutator and the anti-
commutator of the density operator with the Hamiltonian. The
commutator yields the propagation equation of the Wigner func-
tion, that is, the quantum Liouville equation. In contrast, the anti-
commutator leads to the phase-space analog of the Schrödinger
eigenvalue equation.

For the case of an inverted harmonic oscillator the quantum Li-
ouville equation reduces to the classical Liouville equation and is
therefore, independent of h̄. In particular, it shows that the Wigner
function of an energy eigenstate is constant along the classical
trajectories. However, even for a quadratic barrier, the equation fol-
lowing from the anti-commutator contains h̄ explicitly. It is this
equation which determines the quantum mechanical weight of
each classical trajectory and provides us in this way with the tun-
neling and reflection coefficient.

This discussion also brings out most clearly the difference be-
tween a dynamical situation where a wave packet approaches a
quadratic barrier and a stationary one corresponding to an en-
ergy eigenstate which is the topic of our Letter. Indeed, in the
dynamical case, it is sufficient to propagate the Wigner function
representing the initial wave packet along the classical trajectories
as dictated by the reduction of the quantum Liouville equation to
the classical. In this scenario h̄ enters only through the initial state.

However, for the analysis of the energy eigenstate the prop-
agation equation does not suffice. We also need to invoke the
phase-space analog of the Schrödinger eigenvalue equation.
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Fig. 1. Tunneling coefficient T of an energy eigenstate of eigenvalue E through a
parabolic barrier (a) in its dependence on E (b) explained in terms of classical
phase-space trajectories (c) subjected to the boundary conditions of a particle com-
ing from the left (d). For three different energies — below, at the top of, and above
the barrier — we depict the classical phase-space trajectories (c) which are either
being reflected from, stopping at the top of, or going above the potential hill, re-
spectively. The crossed line represents the separatrix in phase space separating the
trajectories coming from the left and from the right. Hence, under normal scatter-
ing situations only half of phase space is accessible depicted in (d) for a particle
approaching from the left. The quantum mechanical transmission curve (b) is due
to the quantum mechanical weight of all classical trajectories going above the bar-
rier provided by the Wigner function.

We emphasize that the Wigner function of tunneling in the in-
verted harmonic oscillator has also been analyzed in Ref. [12]. The
authors of this paper first derive the quadrature representation of
the energy eigenfunctions and then perform the integral in the
definition of the Wigner function. In contrast, we start from the
two partial differential equations [10,11] determining the Wigner
function from phase space. Therefore, we find the Wigner function
without ever going through the wave function. This approach is
not only direct but also yields immediately the proposed interpre-
tation of the tunneling coefficient. Moreover, it also builds a bridge
to the ‘on-first-sight’ completely unrelated field of particle creation
at event horizons of black holes associated with logarithmic phase
singularities. Indeed, we show that as a result of the phase-space
analog of the Schrödinger eigenvalue equation the kernel of the
Wigner function contains such a singularity as well.

2. Phase-space differential equations

We study the tunneling of a particle of mass M through a
quadratic barrier of steepness Ω expressed by the Hamiltonian

H ≡ p2

2M
− 1

2
MΩ2x2. (2)

Here x and p denote the position and the coordinate of the parti-
cle.

For this purpose we consider the Wigner function [8]

W E(x, p) ≡ 1

2π h̄

∞∫
−∞

dy e−ipy/h̄ ψ∗
E

(
x − y

2

)
ψE

(
x + y

2

)
(3)

of an energy eigenstate |E〉 of Ĥ with wave function ψE = ψE (x).
However, instead of solving first the time independent Schrödinger
equation ĤψE = EψE for ψE and then performing the integration
in Eq. (3) pursued in Ref. [12], we analyze the partial differential
equations [10,11]

[
p

M

∂

∂x
+ MΩ2x

∂

∂ p

]
W E(x, p) = 0 (4)

and{[
p2

2M
− 1

2
MΩ2x2

]
− h̄2

8

[
1

M

∂2

∂x2
− MΩ2 ∂2

∂ p2

]}
× W E(x, p) = E W E(x, p) (5)

for the Wigner function in phase space. We emphasize that Eqs. (4)
and (5) are exact for the inverted harmonic oscillator.

3. Wigner function

The classical Liouville equation (4) implies that W E is constant
along the classical phase-space trajectories of a fixed energy H
given by Eq. (2) and shown in Fig. 1(c), that is

W E(x, p) = WE/(h̄Ω)

(
H(x, p)

h̄Ω

)
. (6)

Next we take into account the boundary conditions associated
with a scattering process. Two distinct possibilities offer them-
selves: (i) the particle approaches the barrier from the left, or (ii)
it impinges from the right.

The two cases manifest themselves in different classical phase-
space trajectories. Whereas the situation (i) is described by the
trajectories in the domain above the separatrix

p = MΩx, (7)

depicted in Fig. 1(d), the case (ii) covers the area below it.
Hence, for a particle coming from the left, the Wigner function

W (l)
E of an energy eigenstate reads

W (l)
E (x, p) = WE/(h̄Ω)

(
H(x, p)

h̄Ω

)
Θ(p − MΩx), (8a)

where Θ denotes the Heaviside step function. Hence, only the
classical trajectories above the separatrix contribute to the Wigner
function as shown in Fig. 1(d).

Likewise, for a particle approaching from the right we find

W (r)
E (x, p) = WE/(h̄Ω)

(
H(x, p)

h̄Ω

)
Θ(MΩx − p). (8b)

With the help of the familiar identity

xδ(x) = 0 (9)

for the Dirac delta function it is easy to verify that both expres-
sions satisfy the Liouville equation (4) as long as the function Wε

is differentiable. The form of Wε = Wε(η) corresponding to the
scaled eigenvalue ε ≡ E/(h̄Ω) in its dependence on the dimen-
sional energy

η ≡ H(x, p)

h̄Ω
≡ 1

h̄Ω

[
p2

2M
− 1

2
MΩ2x2

]
(10)

of a classical trajectory is then determined by the Schrödinger
equation (5) in phase space. Indeed, when we substitute the ansatz
Eq. (8b) into Eq. (5) we arrive at the ordinary differential equation

η
d2Wε

dη2
+ dWε

dη
− 4(ε − η)Wε = 0. (11)

Again we have made use of Eq. (9). It is remarkable that Eq. (11)
is independent of the Heaviside step function.
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