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We study the phase-space properties of a charged particle in a static electromagnetic field exhibiting
vortex pairs with complementary topological charges and in a pure gauge field. A stationary solution
of the Schrödinger equation that minimizes the uncertainty relations for angular momentum and
trigonometric functions of the phase is obtained. It does not exhibit vortices and the angular momentum
is due to the gauge field only. Increasing the topological charge of the vortices increases the regions
where the Wigner function in the angle–angular momentum plane takes negative values, and thus
enhances the quantum character of the dynamics.
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1. Introduction

In recent years, it has been possible to create electric and mag-
netic fields in the laboratory with predetermined spatial topolog-
ical defects. Thus, for instance, semiconductors in the presence
of temperature gradients or external electric currents can develop
steady current vortices and magnetic field vortices [1]. As for ra-
diation electromagnetic (EM) fields, there has been much work on
optical vortices: these are screw singularities in phase fronts char-
acterized by a dark core and a topological charge determined by an
azimuthal quantum number. The best known examples of beams
carrying optical vortices are the Laguerre [2] and Bessel beams [3].
The transmission of these topological defects from the EM field to
the quantum states of matter has been theoretically studied (see,
e.g., Ref. [4]) and experimentally observed [5].

In quantum physics, the behavior of charged particles in EM
fields with nontrivial topologies has many additional interesting
properties, as it is well known since the pioneering paper of
Aharonov and Bohm [6] (AB). In this case, a holonomy of the gauge
field has physically observable effects.

The purpose of the present Letter is twofold. First, we study a
class of quantum states of charged particles in a background field
which is taken as the superposition of two fields with vortices of
complementary topological charge, and an additional gauge field of
AB type. Our primary aim is to illustrate the fact that even though
an EM field exhibits a complicated topological structure, the quan-
tum mechanical state of a charged particle in such a field may be
relatively simple and without topological defects. Nevertheless, as
shown in the second part of the Letter, the state under consider-
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ation is of minimum uncertainty in the angular momentum–angle
observables [7], and the mean value of its angular momentum is
proportional to the magnetic flux quantum associated to the gauge
field.

The plan of the Letter is as follows. In Section 2, we present the
static electric and magnetic background fields described above and
their sources. In Section 3, we show that the Schrödinger equa-
tion for a charged particle in such a field configuration admits a
normalized analytical solution, and we analyze its properties in
detail. Section 4 is devoted to a careful formulation of the un-
certainty relations for angle and angular momentum operators,
and to the application of these relations to our quantum state,
showing that it generalizes the minimum uncertainty states stud-
ied in Refs. [8,9]. The experimental characterization of the state
of a quantum system is usually performed through the recon-
struction of quasi-probability distribution functions [10], such as
the Wigner function [11,12]. It is known, however, that some care
must be taken in defining this distribution function for angle and
angular momentum variables [7]. Accordingly, in Section 5, we
apply Mukunda’s formulation of the Wigner functions [13,15] to
our minimum uncertainty wave-functions and we also calculate its
marginal distributions. Finally, we discuss the consequences of the
reported results in Section 6.

2. Static electric and magnetic fields from a superposition of
vortex fields

Consider an electrostatic potential with a spatial dependence in
circular cylinder coordinates given by

V(ρ,ϕ, z) = V(n)(ρ,ϕ) + U(z),

V(n)(ρ,ϕ) = V 0 Jn(ρ/ρ0) cos(nϕ), (1)
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where Jn(x) is the Bessel function of order n, V 0 determines the
intensity of the potential, ρ0 the natural length scale of the system,
and U(z) is a potential with no topological defects. V(n) can be
generated by a charge density distribution

D(n)(ρ,ϕ) = − V 0

4πρ2
0

Jn(ρ/ρ0) cos(nϕ). (2)

Since near the origin Jn(x) ∼ xn , the potential V(n) is a super-
position of two scalar vortices of order n around the z-axis,

Jn(ρ/ρ0) cos(nϕ) ∼ (ρ/ρ0)
n(einϕ + e−inϕ

)
, ρ � ρ0.

The corresponding electric field is given by

E(n)(ρ,ϕ) = V 0

2ρ0
Re

(
Jn+1(ρ/ρ0)ei(n+1)ϕe−

− Jn−1(ρ/ρ0)ei(n−1)ϕe+
)
, (3)

where Re denotes the real part, and e± = ex ± iey . The electric
potential is illustrated in Fig. 1 and the field E in Fig. 2(a), where
its complex topological structure can be visualized. Evidently, there
are sources and sinks representing positive and negative charge
distributions.

Fig. 1. Electric potential V(n)(ρ,ϕ) for n = 2.

In complete analogy, consider a magnetic field

B(ρ,ϕ, z) = B(n)(ρ,ϕ) + Bs(ρ,ϕ, z)ez,

B(n)(ρ,ϕ) = B0 Jn(ρ/ρ0) cos nϕ ez, (4)

where Bs(ρ,ϕ, z) is the amplitude of a magnetic field without
topological defects. Notice that in the configuration under consid-
eration the electric E(n) and magnetic B(n) fields are orthogonal.
The field B(n) can be generated by a steady current

J(n)(ρ,ϕ) = − B0

8πcρ0
Im

(
Jn+1(ρ/ρ0)ei(n+1)ϕe−

+ Jn−1(ρ/ρ0)ei(n−1)ϕe+
)
, (5)

and B results in general from a vector potential

A(ρ,ϕ, z) = A(n)(ρ,ϕ) + As(ρ,ϕ, z) + ∇φ(ρ,ϕ, z),

A(n)(ρ,ϕ) = − B0ρ0

2
Im

(
Jn+1(ρ/ρ0)ei(n+1)ϕe−

+ Jn−1(ρ/ρ0)ei(n−1)ϕe+
)
,

∇2φ(ρ,ϕ, z) = 0. (6)

In this equation, Im denotes the imaginary part, and ∇ × As =
Bzez . A function ∇φ which does not give rise to a magnetic field B
has been added: it is a pure gauge field. The field φ could be gen-
erated by a lengthy solenoid with arbitrarily small radius (line flux)
lying on the z-axis. We work with A(n)(ρ,ϕ) in Coulomb gauge
∇ · A(n) = 0. In Fig. 2(b), we illustrate the structure of the field A(n)

which is proportional to J(n) . Current vortices are clearly visible.

3. Schrödinger equation

The electromagnetic field proposed in the previous section has
been chosen with a view to obtaining a particular solution of the
Schrödinger equation which is known to represent a minimum
uncertainty state. Indeed, under stationary conditions, a spinless
particle of charge q and mass m0 satisfies the Schrödinger equa-
tion

1

2m0

[
−ih̄∇ − q

c
A
]2

Ψ + qVΨ = EΨ. (7)

Fig. 2. Electric field E(n)(ρ,ϕ) and magnetic potential A(n)(ρ,ϕ) for n = 2.
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