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Detecting connectivity of small, dense oscillator networks from
dynamical measurements based on a phase modeling approach

Isao T. Tokuda a,∗, Mahesh Wickramasinghe b, István Z. Kiss a

a Department of Mechanical Engineering, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
b Department of Chemistry, Saint Louis University, 3501 Laclede Ave., St. Louis, MO 63103, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 14 February 2013
Received in revised form 6 May 2013
Accepted 8 May 2013
Available online xxxx
Communicated by C.R. Doering

Keywords:
Oscillator networks
Connectivity
Phase equation
Data analysis

An approach is presented for detecting the connectivity between the oscillator elements from the
measured multivariate time series data. Our methodology is based upon the phase equation modeling
of the oscillator networks, where not only the connection matrix but also the natural frequencies and
the interaction function of the oscillators are estimated. Application of this technique to simulated data
as well as experimental ones from electrochemical oscillators shows its capability for precise detection
of defects in the connection matrix for small-size networks. Dependence of the methodology on the
observational noise, the network size, the number of defects, and the data length is also examined.

© 2013 Published by Elsevier B.V.

1. Introduction

A network of interacting oscillators can be found in diverse
fields of natural science and engineering [1–3]. Here, connectiv-
ity of the network elements plays a crucial role on the formation
of the collective dynamics. Effect of the complex network topol-
ogy on the dynamics of coupled oscillators has been intensively
investigated [4]. To deal with the real-world systems, however, it
is extremely rare that the detailed connectivity of the network can
be directly and noninvasively investigated. In many systems es-
pecially in biology, direct measurement of the connectivity may
destroy the true nature of the coupling functions that underlie the
real network dynamics. For instance, in the studies of circadian
rhythms, fundamental mechanisms for connecting the circadian
cells in the superchiasmitic nucleus remain largely unknown [5,6].
Detailed physiological investigation of the in vitro tissue may not
reveal the true network function that is inherent in situ. Because
of these difficulties, estimation of the network connectivity from
time series data recorded in a noninvasive manner is an awaited
technique. Along this line, several approaches have been proposed
up to date. Information transfer [7], mutual predictability [8], re-
currence properties [9], and permutation-based asymmetric asso-
ciation measure [10] have been utilized to identify the coupling
directions. Index for partial phase synchronization has been de-
veloped to distinguish direct from indirect interactions [11–13].
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A graph theoretic approach to detect causalities in multivariate
time series has been recently developed [14]. Response properties
of the network dynamics to external stimuli have been also ex-
ploited [15,16].

Here, we focus on a phase description of the oscillator net-
works [2]. Under certain conditions, which are described in detail
in Section 2, a network of weakly coupled self-sustained oscil-
lators can be reduced to a dynamics of interacting phase oscil-
lators. This drastically simplifies the modeling assumptions and
enables straightforward estimation of the phase dynamics. We
have applied the multiple-shooting method to fit the phase equa-
tions to multivariate time series to show that the interaction
functions as well as the natural frequencies can be well identi-
fied from a globally coupled populations [17]. Kralemann et al.
[18,19], on the other hand, carried out a data fitting using the
probability density function of a modified phase to estimate the
phase dynamics from time series and Blaha et al. [20] applied it
to two interacting electrochemical oscillators. Our approach has
the practical advantage of algorithmic simplicity and hence it
is straightforward to implement. It has been, however, applied
only to the simplest case of all-to-all coupling, where all oscil-
lator elements are connected to all the others. The aim of the
present Letter is to extend our previous approach to a network
dynamics of an arbitrary topology. In particular, we focus on the
case that the network has zero-or-unity connections, where the
zero connections are referred to as defects in the coupling. We
examine the capability of our approach to reveal the network
connectivity from multivariate data recorded from coupled sys-
tems.
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2. Method

Our problem can be stated as follows. Consider a system of N
weakly coupled nearly identical limit cycle oscillators:

ẋi = F i(xi) + C

N

N∑
j=1, j �=i

T i, j G(xi, x j), (1)

where xi and F i (i = 1,2, . . . , N) stand for state variables and au-
tonomous dynamics of the ith oscillator, respectively, C represents
the coupling constant, and G is an interaction function between
ith and jth oscillators. The matrix {Ti, j} describes connectivity be-
tween the oscillators, where the present problem is applicable to both
uni- and bi-directionally coupled oscillators. Our assumption is that
in isolated condition (i.e., C = 0) each oscillator F i generates a
stable limit cycle with similar natural frequencies ωi . The func-
tions Fi should be similar among the N oscillators near the limit
cycle trajectory. Then the phase reduction theory [2] states that
for a weak coupling C the network dynamics can be reduced to
the phase equations: θ̇i = ωi + C

N

∑N
j=1, j �=i T i, j H(θ j − θi) (θi : phase

of ith oscillator; H : interaction function). As a recording condi-
tion, we assume that simultaneous measurement of all oscillators
is made as {ξi(n�t) = g(xi(n�t)): n = 1, . . . , M}N

i=1 (g: observation
function, �t: sampling time).

Our objective of inferring the network connectivity through re-
covering the phase dynamics is accomplished under conditions
that (i) the underlying dynamics (1) are unknown, (ii) the inter-
action function is based upon a difference coupling (i.e., H(0) = 0),
(iii) the coupling constant C associated with the measured data
is in a non-synchronized regime, and (iv) the connection matrix
is composed of zero-or-unity elements (i.e., Ti, j = 0 or 1), where
most of the connections exist (non-sparse matrix). Number of the
defects (Ti, j = 0) is denoted by β .

Concerning the condition (ii), the difference coupling provides
a good assumption, because, in many systems, the phase interac-
tion disappears when the oscillators are in a complete in-phase
relationship.

Concerning the condition (iv), such a non-sparsely connected
system can be found in real-world systems. For instance, all-to-
all connections are assumed in various systems including arrays
of Josephson junctions [21] and lasers [22], population of circa-
dian oscillators [5,6], ensembles of electrochemical oscillators [23],
and neuronal populations [24]. It can easily happen that a small
portion of the connections is destroyed by some damage to the
system, resulting in a non-sparsely connected system.

Our approach to the problem is based upon the following four
steps.

1. Extract phase signals θi(t) from the data ξi(t). The phase θ

is defined by a simple piecewise linear formula, in which it is
increased by 2π at every local maximum of ξ(t) and between
the local maxima it grows in proportion to time [3].

2. Fit the phases {θi(t)} to the phase equations:

θ̇i = ω̃i + C

N

N∑
j=1

T̃ i, j H̃(θ j − θi), (2)

where {ω̃i} and {T̃ i, j} represent approximate values for the
natural frequencies and those for the connection matrix, re-
spectively. H̃ stands for an approximate function for the inter-
action H , which is in general nonlinear and periodic with
respect to 2π . The approximation is based on a Fourier ex-
pansion up to the order of D as H̃(�θ) = ∑D

j=1[a j sin j�θ +
b j(cos j�θ − 1)].
The above phase equations have unknown parameters of
{ω̃i,a j,b j, T̃ i, j}, which should be optimized to be fitted to the

data. Simultaneous estimation of the unknown parameters all
at once is, however, an ill-conditioned problem because of the
redundancy of the unknown parameters. Therefore, we divide the
parameters into two groups as {ω̃i,a j,b j} and {T̃ i, j} and esti-
mate them separately in the next two steps.

3. In the first step, the connection matrix is assumed to be of
all-to-all type (T̃ i, j = 1) and estimate the rest of the param-
eters denoted by p = {ω̃i,a j,b j}. This provides a reasonable
assumption for densely connected systems, in which most of
the oscillators are coupled to each other. The parameters p are
estimated by the multiple-shooting method [25]. We denote
the time evolution of the phase equations (2) with respect to
an initial condition θ by φt(θ , p). Then, at each sampling time
t = n�t , the phase equation must satisfy the boundary con-
ditions: θ((n + 1)�t) = φ�t(θ(n�t), p). With respect to the
unknown parameters p, we solve these nonlinear equations
by the generalized Newton method. The evolution function φt

is integrated numerically. For the computation of the gradients
∂φ/∂ p which are needed for the Newton method, variational
equations of the phase equations (2) are also solved numeri-
cally.
A necessary condition to solve the nonlinear equations is that
the number of the unknown parameters p is less than the
number of the equations, that is, N + 2D < N(M − 1). This
always holds in the case we have enough data points M .

4. In the second step, the parameters {ω̃i,a j,b j} estimated in
the previous step are fixed. With respect to the connection
matrix p = {T̃ i, j} as the rest of the unknown parameters, the
multiple-shooting method was applied again in a similar man-
ner as in the previous step.

It should be noted that, in the above method, the first and
the second steps can be repeated in an iterative manner to im-
prove the estimates. We do not employ such a procedure, because
our preliminary study indicated that the iterative algorithm sim-
ply increased the computational cost but did not show a clear
improvement.

3. Results

We applied this technique to a prototypical example of weakly
coupled limit cycle oscillators. We considered the following system
of Rössler equations with diffusive coupling:

ẋi = −αi yi − zi,

ẏi = αi xi + 0.15yi + C

N

N∑
j=1

Ti, j(y j − yi),

żi = 0.2 + zi(xi − 2), (3)

where i = 1, . . . , N . To consider an inhomogeneity of the net-
work elements, parameter values αi , which determine rotation
speed in the (x, y)-space, were varied among the oscillators as
αi = 1 + 0.01 · i (i = 1, . . . , N). Each Rössler oscillator generates a
limit cycle attractor for the chosen parameter values in the ab-
sence of coupling (i.e., C = 0). The multivariate data were recorded
as {yi(t)}N

i=1.
We started with the case of N = 5. As the coupling matrix,

all-to-all connections were assumed (Ti, j = 1). The data {yi(t)}5
i=1

were recorded at a coupling strength of C = 0.01, which corre-
sponds to non-synchronized regime. The sampling interval was
set to be �t = 0.32 for the extraction of the phases {θi(t)}. Then
to apply the multiple-shooting method the data have been down
sampled to �t = 250 · 0.32 and the total of 1000 data points have
been collected for the parameter estimation. As an initial condi-
tion, the unknown parameter values were all set to be zero, i.e.,
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