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We investigate changes in periodicity, and even its suppression, by external periodic forcing in different
two-dimensional maps, namely the Hénon map and the sine square map. By varying the amplitude of a
periodic forcing with a fixed angular frequency, we show through numerical simulations in parameter-
spaces that changes in periodicity may take place. We also show that windows of periodicity embedded
in a chaotic region may be totally suppressed.
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1. Introduction

A generic form of a forced two-dimensional discrete-time dy-
namical system can be written as the mapping [1]

xn+1 = f (xn, yn, θn),

yn+1 = g(xn, yn),

θn+1 = θn + ω (mod 1), (1)

where f , g are real functions, x, y are the dynamical variables of
the unforced system, 0 � θ < 1 is a discrete phase, and ω is an an-
gular frequency. System (1) can be seen as a model for Poincaré
maps of forced three-dimensional continuous-time systems. When
the considered ω is rational, the forcing is said periodic, while
for an irrational ω the forcing is said quasiperiodic. Nonlinear dy-
namical systems quasiperiodically forced, therefore considering an
irrational ω in system (1), have been investigated by many au-
thors [2–6], from the point of view of systems developing strange
nonchaotic attractors. Such attractors are typical structures present
in the phase-space, simultaneously displaying properties character-
istic of both regular and chaotic behaviors, and were first described
in Ref. [7].

The logistic map and the Hénon map, among others, have
been used to illustrate the effect of quasiperiodic forcing on maps.
For example, numerical and analytical investigations considering
a quasiperiodically forced logistic map, show that the transition
to strange nonchaotic attractors occurs when a period-doubled
torus collides with its now unstable parent torus [2]. Therefore,
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the mechanism behind the development of strange nonchaotic at-
tractors in a quasiperiodic forced logistic map is closely connected
with the phenomenon of torus-doubling bifurcation. A scaling law
for the torus-doubling bifurcation process was obtained numeri-
cally for a quasiperiodically forced logistic map [4]. This same im-
portant model has been considered to investigate the emergence
of intermittent strange nonchaotic attractors in quasiperiodically
forced period-doubling systems [5]. The Hénon map in turn, has
been considered as a basic model to investigate the effect of a
quasiperiodic forcing on two-dimensional invertible maps. The ex-
istence of strange nonchaotic attractors in these systems was veri-
fied [3], as well as the existence of intermittent strange nonchaotic
attractors, the latter as a result of a collision between two torus,
one being stable, the other being unstable [6].

The focus of the present Letter is to investigate numerically
the effect of periodic forcing, instead of quasiperiodic forcing, in
two two-dimensional maps, namely the Hénon map [8] and the
sine square map [9,10]. In each case the angular frequency is kept
fixed at different ω = ω0, and parameter-space plots displaying
the dynamical behavior are constructed, considering the parame-
ters of the original unforced system, for some values of the am-
plitude ε . The goal is to investigate order–order and order–chaos
transitions in these models, manifested, respectively, by changes in
the periodicity and by the suppression of windows of periodicity
embedded in chaotic regions, as the amplitude ε varies. In other
words, this work deals with the manipulation of the nonlinear dy-
namics of two discrete-time system models, the invertible Hénon
map and the non-invertible sine square map, by using an exter-
nal periodic forcing. Our numerical results indicate that, under the
influence of an external periodic forcing, change or even suppres-
sion of periodicity can be achieved in considerable regions of the
parameter-space. The Letter is organized as follows. In Section 2
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Fig. 1. Regions and colors in the (a,b) parameter-space of the forced Hénon map (2). (a) ε = 0, therefore the unforced Hénon map. (b) ε = 10−5. (c) ε = 10−2. (d) ε = 10−1.
(For interpretation of the references to color in this figure, the reader is referred to the web version of this Letter.)

we investigate the effect of a periodic forcing on the parameter-
space of the Hénon map. Section 3 is dedicated to similar inves-
tigation considering the sine square map. To complete, concluding
remarks are given in Section 4.

2. Periodically forced Hénon map

The periodically forced Hénon map here considered is given by

xn+1 = a − x2
n + byn + ε cos 2πθn,

yn+1 = xn,

θn+1 = θn + ω (mod 1), (2)

where a and b are, respectively, the nonlinearity and the dissipa-
tion parameters of the original unforced Hénon map, and ε and ω,
with ω rational, represent the amplitude and the angular fre-
quency of the periodic forcing, respectively. As it happens with the
unforced area-contracting Hénon map (|b| < 1), the periodically
forced Hénon map is invertible, having also a nonzero constant Ja-
cobian matrix determinant equal to −b, with −1 < b < 1. For all
computations below, in this section, the ω value was kept fixed at
0.05, a rational number.

Fig. 1 shows four (a,b) parameter-space plots for the periodi-
cally forced Hénon map (2), for some values of the amplitude ε ,
namely ε = 0 in panel (a), ε = 10−5 in (b), ε = 10−2 in (c), and
ε = 10−1 in (d). Note that in fact, Fig. 1(a) is corresponding to the
unforced Hénon map, because in this case the amplitude of the
forcing is null. Each panel in Fig. 1 was obtained by discretizing
the same parameter interval in a mesh of 103 × 103 points. For
each point (a,b), an orbit from an arbitrary initial condition con-
verges or to a chaotic attractor, or to a periodic attractor, or to an
attractor located at infinity, after a transient of 50 × 103 iterations.
Parameter values for which system (2) presents chaotic behav-
ior, are corresponding to the region painted in grey color, while

parameters for which system (2) converges to infinity are corre-
sponding to the region painted in red color. Regions of parameter
values related to some different periodicities are identified by in-
teger numbers, which denote the period of the respective region.

In Fig. 1(a), that corresponds to the parameter-space of the
unforced Hénon map, can be seen a piece of the known 1 × 2n

period-doubling bifurcation cascade, in the present scale specifi-
cally the more visible doublings 1 (blue region) ⇒ 2 (green region)

⇒ 4 (yellow region). Also can be seen some periodic structures
embedded in the chaotic region, highlighting the typical shrimp-
shaped period-5 in black color. As the external forcing is switched
on and their amplitude is increased from zero, the picture in the
parameter-space remains the same until ε = 10−6. For ε = 10−5,
corresponding to the parameter-space in Fig. 1(b), the shrimp-
shaped period-5 structure embedded in the chaotic region had
their period changed to 20. When the forcing amplitude ε reaches
the value 10−2, the region in the parameter-space occupied by the
piece of 1 × 2n period-doubling bifurcation cascade is replaced by
a large period-20 region, with a period-40 narrow strip. Simultane-
ously, the period-20 shrimp-shaped structure begins to disappear,
as shown in Fig. 1(c). Fig. 1(d), where ε = 10−1, shows the chaotic
region completely free of periodic structures, and also shows that
the piece of the 1 × 2n period-doubling bifurcation cascade above-
mentioned, was replaced by a single periodic region, namely the
period-20 cyan region. Increasing more and more the forcing am-
plitude from ε = 0.1, both the period-20 and the chaotic region
begin to be swallowed by the divergence region. For ε = 2.1, for
example, the parameter-space appears entirely painted in red.

Therefore, we see above that by varying the amplitude of an ex-
ternal periodic forcing with a constant rational angular frequency,
it is possible to destroy periodic windows embedded in a chaotic
region of the (a,b) parameter-space of the Hénon map. It is possi-
ble to achieve continuous regions of chaos in the (a,b) parameter-
space of the Hénon map, with no periodic windows embedded.
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