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The emission of hard bremsstrahlung during the collision of relativistic spin-polarized electrons with inert
spin 0 and spin 1

2 nuclei is calculated within the weak-potential approximation. Diffraction structures
in the polarization correlations between the beam electron and the emitted photon are predicted for
collision energies in the region 50–120 MeV if the photon is emitted at backward angles. The dynamical
recoil plays a dominant role concerning the location and the shape of the structures. The target nuclei
19F, 64Zn and 89Y are investigated.
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The phenomenon of diffraction structures in the angular distri-
bution of electrons scattered elastically from ions or atoms is well
known. Such structures appear when the beam electrons are en-
ergetic enough to penetrate into the electronic cloud of the target,
which requires energies of, say, 50 eV–5 keV. Then the scatter-
ing from the individual atomic electrons leads to an interference
pattern, the so-called Ramsauer–Townsend effect [1–3] (for recent
experiments on the scattering of quasifree electrons, see the re-
view by Lucas et al. [4]). The occurrence of the structures not
only in the angular distribution but also as a function of the beam
energy is readily understood from inspecting the minimum mo-
mentum transfer qmin necessary for a given scattering event. In
the case of elastic scattering with initial momentum ki one has
qmin ≈ 2|ki | sin(θ/2) ≈ (�R)−1 which in turn defines the average
electron–nucleus distance �R which corresponds to the scattering
angle θ at the given energy.

A more sensitive tool than the electron distribution for observ-
ing the structures in elastic scattering is the spin asymmetry in the
case of polarized beam electrons, the so-called Sherman function
S [5]. There is a multitude of early experimental polarization data
which are compiled by Kessler [3]. When the electron is energetic
enough to come close to the nucleus the diffraction structures dis-
appear (around 50 keV). However, they reappear again at much
higher energies, beyond, say, 40 MeV, in the scattering from heavy
nuclei. At such energies the beam electron can distinguish the in-
dividual protons of the nucleus which affect the scattering of the
electron in a similar way as do the atomic electrons in the low-
energy regime. Such relativistic diffraction effects, modulating the
cross sections and thus commonly used to analyze the nuclear
structure (see e.g. [6,7]), have also been predicted for the Sherman
function [8–11], but are still waiting for an experimental verifica-
tion.

The close connection between the Sherman function in elastic
electron scattering and the spin asymmetry A in bremsstrahlung

by polarized electrons if only the emitted photon, but not the
scattered electron, is observed, was pointed out quite early [12].
Even more, it was predicted for electrons scattering from point
nuclei that all three polarization correlations for elastic scatter-
ing relating, respectively, to the three possible spin directions of
the beam electron [13], will under certain conditions coincide in
their angular distribution with the respective bremsstrahlung po-
larization correlations. These requirements are a high charge of
the nucleus and a similar behavior of the two species of outgoing
particles: they have both to be in helicity eigenstates, the pho-
ton has to be at the high-frequency end of the spectrum and the
beam energy has to be high enough such that the electron rest
mass m can be neglected [14]. As a consequence of this correspon-
dence, it was expected that the high-energy diffraction structures
should be visible not only in elastic scattering but also in hard
bremsstrahlung.

In the present work target nuclei with charge Z < 40 and beam
energies up to 120 MeV are considered, where a semirelativistic
bremsstrahlung theory is still applicable. Our theory is based on
the relativistic Born approximation which accounts for the influ-
ence of recoil [15,16] and nuclear structure [17,18]. Higher-order
effects are included in an additional contribution to the radia-
tive potential scattering amplitude by making use of the weak-
potential Sommerfeld–Maue prescription introduced in [19]. The
magnetic scattering, if present, is treated within the Born approxi-
mation.

For spin zero nuclei, to be considered first, only potential scat-
tering takes place. There the recoil effects arise exclusively from
energy and momentum conservation and are due to the finite
mass of the target nucleus (the kinematical recoil). The doubly
differential cross section for the emission of a bremsstrahlung pho-
ton with 4-momentum k = (ω/c,k) and polarization direction eλ

into the solid angle dΩk is given (in atomic units, h̄ = m = e = 1)
by
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where ζ i is the spin vector of the beam electron and v the colli-
sion velocity. Since it is assumed that the scattered electron is not
observed, a summation over its final spin polarization σ f and an
integral over the solid angle dΩ f of emission has to be included.
fre is the recoil factor,

fre = 1 − k f qE f

k2
f Enuc, f

, (2)

where q = ki − k f − k is the momentum transfer to the nucleus
and ki = (Ei/c,ki) and k f = (E f /c,k f ) are, respectively, the initial
and final 4-momenta of the electron. Enuc, f is the final energy of
the nucleus which is assumed to be initially at rest. The radiation
matrix element for spin zero nuclei is given by

W el
fi = 2π2c2

Z

∫
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(σ f )+
f (r)

(
αe∗

λ

)
e−ikrψ

(σi)
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where ψ
(σi)

i and ψ
(σ f )

f are the Dirac eigenstates of the scattering
electron to a given nuclear potential, and α is the vector of Dirac
matrices. An exact evaluation of W el

fi based on partial-wave ex-
pansions of the electronic wavefunctions (a powerful method at
energies near and below 5 MeV [20,21]) is not possible in the en-
ergy regime considered here. We therefore use the weak-potential
approximation (WPA) where W el

fi is approximated by

W el
fi ≈ (

u
(σ f )+
k f

Mfi,0u(σi)

ki

)
F1(q). (4)

Here, u(σi)

ki
, u

(σ f )

k f
are the electronic free 4-spinors and F1(q) is the

Dirac form factor which accounts for the charge distribution of the
nucleus [22,17]. The transition operator is taken as

Mfi,0 = MBH
fi (0) + �Mfi,0, (5)

where MBH
fi (0) is the recoil-modified (first-order) Bethe–Heitler op-

erator [16],

MBH
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for ν = 0. �Enuc is the energy transferred to the nucleus and γ ν ,
ν = 1,2,3, and γ 0 = β (with γ0γ

0 = 1) are Dirac matrices. The
higher-order effects are taken into consideration by �Mfi,0 which
is the difference between the respective radiation operators in the
Sommerfeld–Maue (SM) theory (also termed Elwert–Haug theory
[23], where the electrons are described in terms of semirelativistic
Sommerfeld–Maue eigenfunctions to a fixed point nuclear poten-
tial) and in the Bethe–Heitler theory [24]. Recoil is disregarded in
�Mfi,0.

For the nucleus 64Zn (Z = 30) a Fourier–Bessel expansion of the
nuclear charge density 
(r) is used [25], leading to the form factor

F1(q) ≈ 4π
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Fig. 1. Spin asymmetry as a function of beam energy Ei,kin for electrons, spin-
polarized perpendicular to the reaction plane, colliding with 64Zn. The upper curves
display A from bremsstrahlung at θk = 165◦ and R = 0.8 (———, WPA; — — —, SM
theory). The lower curves display −S from elastic scattering at the scattering angle
θ = 165◦ (− · − · −, DW-0 theory using a Fourier–Bessel charge distribution; · · · · · ·,
DW-0 theory for a point-like nucleus [10,11]).

where j0(q̃r) is a spherical Bessel function, q̃ = √
q2 − (�Enuc/c)2,

pk = kπ
R0

and ak, N and R0 are the parameters from the Fourier–
Bessel expansion. 
(r) is normalized such that F1(0) = 1.

The spin asymmetry A is defined by [26,27]

A = dσ(ζ i) − dσ(−ζ i)

dσ(ζ i) + dσ(−ζ i)
, (8)

where dσ(ζ i) ≡ ∑
λ

d2σ
dω dΩk

(ζ i, eλ) with ζ i in the direction of k×ki

(which is perpendicular to the reaction plane), including a sum
over the two polarization directions eλ .

Fig. 1 shows the dependence of A on the beam energy Ei,kin =
Ei − mc2 for a fixed ratio R = ω/Ei,kin = 0.8 and the angle θk =
165◦ between k and the z-axis along ki . Comparison is made with
the SM theory [23] which is obtained from (1) by neglecting recoil

and by replacing ψ
(σi)

i and ψ
(σ f )

f in (3) by SM functions. Kine-
matical recoil effects being small in the displayed energy region,
the deviations from the SM theory, which increase with Ei and
become important above 40 MeV, are due to the finite nuclear
size. Diffraction structures are visible above 80 MeV, having a sim-
ilar shape as those appearing in the Sherman function S for the
same collision geometry. Thereby S is obtained from the rhs of (8),
now with dσ(ζ i) ≡ dσ/dΩ(ζ i) representing the elastic scattering
cross section into a helicity (+) state at angle θ = θk . The elas-
tic scattering cross section is calculated by means of a relativistic
phase-shift analysis [8,10] with the help of the code RADIAL from
Salvat et al. [28] for a given nuclear potential (called DW-0 theory).
Note that the negative sign of S in the figure is due to opposite
conventions for the electron spin orientation in the elastic scat-
tering, respectively, bremsstrahlung literature. The bremsstrahlung
interference structures decrease in width if R → 1, but are nearly
independent of photon angle (in the region beyond 160◦). The on-
set of these structures at a higher energy as compared to elastic
scattering results from the smaller average momentum transfer. In
fact, since the integration over the electron scattering angles im-
plies the sampling of a band width of momentum transfers, we
may take qave ≈ |ki − k| as an average momentum transfer. For a
fixed ratio R and |ki |/c � 1 (i.e. Ei,kin � 5 MeV) one obtains, using
|k| = R Ei,kin/c,



Download English Version:

https://daneshyari.com/en/article/8205910

Download Persian Version:

https://daneshyari.com/article/8205910

Daneshyari.com

https://daneshyari.com/en/article/8205910
https://daneshyari.com/article/8205910
https://daneshyari.com

