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Ions are critical to the structure and stability of polyelectrolytes such as nucleic acids. In this work,
we systematically calculated the potentials of mean force between two like-charged nanoparticles in
salt solutions by Monte Carlo simulations. The pseudo-spring method is employed to calculate the
potential of mean force and compared systematically with the inversed-Boltzmann method. An effective
attraction is predicted between two like-charged nanoparticles in divalent/trivalent salt solution and such
attraction becomes weakened at very high salt concentration. Our analysis reveals that for the system, the
configuration of ion-bridging nanoparticles is responsible for the attraction, and the invasion of anions
into the inter-nanoparticles region at high salt concentration would induce attraction weakening rather
than the charge inversion effect. The present method would be useful for calculating effective interactions
during nucleic acid folding.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Ions play critical roles in the thermodynamic and kinetic prop-
erties of charged systems, such as nucleic acids and other poly-
electrolytes [1–8]. For example, the folding of nucleic acids into
compact native structures would bring the build up of negative
charges and requires cations to neutralize the negative backbone
charges, and for other polyelectrolytes, ionic condition is also es-
sential for their structure and stability [9–17].

Extensive experiments, theories and simulations have been em-
ployed, attempting to obtain a fundamental understanding on the
important and complex roles of ions in polyelectrolyte system
[18–26]. A typical paradigm is the system of two like-charged
polyelectrolytes immersed in ion solution, which has attracted con-
siderable interests in recent years, since ions can switch the like-
charge repulsion into attraction at some ionic conditions [27–30].
For DNA and RNA, the addition of multivalent salt ions can con-
dense DNA/RNA from extended state to compact state [31–38].
For (spherical) polyelectrolytes, the multivalent ions could induce
the dispersed distribution to form compact clusters [39–43]. Al-
though many efforts have been made and much progress has been
achieved on understanding the ion roles in modulating like-charge
interaction [44–46], there is still lacking of the comprehensive un-
derstanding on how ions influence the effective interactions, in-
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cluding the effects of ion concentration, valence, size and charge
density, especially at very high salt and charge density on poly-
electrolytes.

However, to quantify the ion effects in the systems of highly
charged polyelectrolytes still remains a challenge, especially for
multivalent ions, not only because the ion-modulated interaction is
not strong (∼ kB T ), but also polyelectrolytes could induce (strong)
correlations between (multivalent) ions in the vicinity of molec-
ular surface. Up to now, there have been two classic theories
for treating ion–polyelectrolyte interaction: the counterion conden-
sation (CC) theory [47] and the Poisson–Boltzmann (PB) theory
[48–55]. The two theories are rather successful in predicting elec-
trostatic properties of polyelectrolyte in monovalent/aqueous so-
lutions. Nevertheless, the CC theory is based on the line-charge
structural model and is developed for dilute salt solution and lin-
ear polyelectrolytes of infinite length. Thus it is inapplicable for
shaped polyelectrolytes in salt solutions. The PB theory is based
on the Poisson equation with a Boltzmann weighted mean distri-
bution for diffusive ions, where ions are modeled as continuous
fluid-like particles moving independently in a mean electrostatic
field. Thus, the PB theory ignores discrete ion properties such as
ion correlation and ion fluctuation, and always predicts like-charge
repulsion even in multivalent ion solutions. For spherical polyelec-
trolytes, the Derjaguin–Landau–Verwey–Overbeek (DLVO) theory
has been developed to describe the effective interactions [56–58].
The electrostatic contribution of the DLVO interactions comes from
the linearization of nonlinear term in PB equation at weak elec-
tric potential approximation, and has the form of Debye–Hückel-
type potential for two spherical polyelectrolytes. In analogy to PB,
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the DLVO theory always predicts a (screened) like-charge repul-
sion.

To account for the effects of ion correlation and ion-binding
fluctuation, some advanced theories have been proposed, such as
the dressed ion theory/strong coupling theory for charged colloids
[59–61], integral equation theory for polyelectrolyte [62,63], and
tightly bound ion theory for nucleic acids [64–67]. These advanced
theories have successfully predicted a variety of thermodynamic
properties for polyelectrolytes and nucleic acids in ionic solu-
tions, while they are either developed for the salt-free solutions
in strong coupling limit or for specified polyelectrolytes (e.g., nu-
cleic acids). To deal with the electrostatic properties of biomolecule
system, some other approaches have been developed, such as vari-
ational multiscale models and density-functional theory [68,69].
As a needful bridge between theories and experiments, computer
simulations have become a powerful tool for the multi-body statis-
tical systems and has made many valuable predictions for charged
systems [70–73]. Especially in recent years, along with the great
development of computation facility, all-atom MD simulations have
been used to predict the interaction between biological molecules.
Recently, Luan et al. predicted the interaction between two short
DNA helices in monovalent and divalent electrolytes by the all-
atom MD simulation, as well as the end-to-end interaction be-
tween DNAs and DNA–DNA interaction in tight supercoils [74–77].
The “ion bridge” has been proposed to be responsible for the ef-
fective attraction between two like-charge DNAs.

In this Letter, we will employ Monte Carlo (MC) simulations to
systematically calculate the ion-modulated potential of mean force
(PMF) between two like-charged nanoparticles. The pseudo-spring
method is employed to calculate the PMF, and compared system-
atically with the inversed-Boltzmann method. Beyond the previous
studies, we emphasize the method for calculating the PMF, and physical
mechanism for the ion-modulated like-charge interactions at extensive
ionic conditions, especially at very high salt concentration. Such meth-
ods would be helpful for probing the effective interaction during
nucleic acid folding.

2. Model and methods

In this work, for simplicity, we use charged macro-spheres to
represent nanoparticles [78,79], and the ion solution is considered
to be an ensemble of small spheres of different charges and sizes,
different kinds of ions are represented by the corresponding charge
and size, and all of them are dispersed in a continuum dielectric
medium whose permittivity corresponds to that of the solvent.

The interaction defining the system is composed of two contri-
butions: the electrostatic interaction Uel, and the excluded volume
interaction Uex. The electrostatic interaction Uel between charges i
and j (ions and nanoparticles) is given by

Uel = qiq j

4πεε0r
, (1)

where qi and q j are charges on spheres i and j, and r is the
center-to-center distance between the two spheres. ε is the dielec-
tric constant of solvent (ε = 78 at room temperature), and ε0 is
the permittivity of vacuum. The excluded volume interaction Uex
between spheres i and j is accounted for by a repulsive Lennard-
Jones potential

Uex =
{

4U0
(
( σ

r )12 − ( σ
r )6

)
for r < σ ;

0 for r � σ ,
(2)

where σ is the sum of the radii of the two spheres, and U0 is the
volume exclusion strength. In this study, we take U0 = 100. Our
control test shows that our results are not sensitive to the value of
U0 around 100.

The simulation cell is a rectangular cell where periodic bound-
ary condition is applied. To diminish the boundary effect, we
always keep the cell size larger than two nanoparticles by six
times of the Debye length, and the calculation results are stable
as tested against different cell sizes. In the simulations, the radii
of nanoparticles and ions are taken as 10 Å and 2 Å, respectively.
The charges Z on nanoparticles are taken as −21e, ensuring the
surface charge density is close to that of phosphate groups in nu-
cleic acid [80]. Also, the additional calculations are performed for
other ion radii (3 Å, 4 Å) to study the ion size effect, and for
other nanoparticle charge Z (= −12e,−24e,−36e) to study the
charge density effect. In the calculations of potential of mean force
�G(x) = G(x) − G(xref), for simplicity, the outer-reference distance
xref is taken as 40 Å for all ion conditions.

We used the Metropolis Monte Carlo algorithm for all simula-
tions in our work, which is a computational approach for generat-
ing a set of N configurations of the system by the relative prob-
ability proportional to the Boltzmann factor: p(Ni) ∝ e−E(Ni)/kB T ,
and the transition probability pi→ j from configuration i to config-
uration j is given by pi→ j = e−(E j−Ei)/kB T . Starting from an initial
configuration with the two nanoparticles in the center and the
ions randomly distributed in the simulation box, every particle
randomly moves to a trial position and we calculate the energy
change �E due to the move. If a random number R (∈ [0,1]) <

p = e−�E/kB T , the trial move is accepted. Repeat the trial move
until the system reaches the equilibrium. Figs. S1 and S2 (in the
supplementary material) show that the statistical results of our
simulations can quickly reach the convergence.

Based on the MC simulations with the above described system
and energy functions, we calculate the potential of mean force for
two nanoparticles with the pseudo-spring method, as well as the
inversed-Boltzmann method.

2.1. Pseudo-spring method

To calculate the PMF between two nanoparticles, we add a
pseudo-spring with spring constant k to link the centers of the two
nanoparticles as shown in Fig. 1(a). The effective force between the
two nanoparticles can be given by

F = k�x, (3)

where �x is the deviation of the spring length away from the
original length x0 at equilibrium. Then the PMF between the two
nanoparticles can be calculated by the integration

�G(x) = G(x) − G(xref) =
x∫

xref

F
(
x′)dx′. (4)

Eq. (4) shows that we need to calculate F (x)’s at a series of x in
order to obtain �G(x).

Figs. 1(a)–(c) illustrate the process of calculating PMF between
the two nanoparticles using the pseudo-spring method. Firstly, we
employed MC simulation for the system of pseudo-spring linked
nanoparticles in salt solution. The statistical analysis on the fluc-
tuation of x versus MC steps at equilibrium (shown in Fig. 1(b))
gives the distribution probability p(x) of separation x, which can
be used to estimate �x. In practice, we fit the distribution prob-
ability to the Gaussian function g(x) ∝ e−(x−b)2/(2c2) to obtain the
deviation in spring length �x (= b − x0). The negative and positive
�x’s correspond to the attractive and repulsive effective force, re-
spectively. Consequently, the force F (x) and PMF �G(x) between
the two nanoparticles can be calculated based on �x’s and the
above described formulas (Eqs. (3) and (4)).
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