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We construct three-dimensional space R3
γ with the scale-dependent metric and the corresponding

Minkowski space–time M4
γ ,β with the scale-dependent fractal (D H ) and spectral (D S ) dimensions. The

local derivatives based on scale-dependent metrics are defined and differential vector calculus in R3
γ is

developed. We state that M4
γ ,β provides a unified phenomenological framework for dimensional flow

observed in quite different models of quantum gravity. Nevertheless, the main attention is focused on
the special case of flat space–time M4

1/3,1 with the scale-dependent Cantor-dust-like distribution of
admissible states, such that D H increases from D H = 2 on the scale � �0 to D H = 4 in the infrared limit
� �0, where �0 is the characteristic length (e.g. the Planck length, or characteristic size of multi-fractal
features in heterogeneous medium), whereas D S ≡ 4 in all scales. Possible applications of approach based
on the scale-dependent metric to systems of different nature are briefly discussed.

© 2013 Published by Elsevier B.V.

1. Introduction

For a long time and even presently one of the most intrigu-
ing, and yet unsolved, problems in theoretical physics concerns
the dimensionality of the space–time continuum [1–4]. Although
the space in our world is commonly perceived as three dimen-
sional and so the dimension of space–time continuum is D =
3 + 1, the problem of the actual dimension of our universe is still
open. It is worth mentioning that the best experimental measure-
ment of the dimensionality of our real world space is given by
d ≈ 3 − 10−9 [5–7]. Moreover, the fractional dimensions of space–
time emerge as useful concepts in several areas of physics [8–41].
Specifically, in the quantum field theories the dimension of space–
time is a parameter that is commonly used to regularize divergent
Feynman integrals in perturbative expansions [42]. Furthermore,
fractional dimensional space represents an effective physical de-
scription of confinement in low-dimensional systems [10,11]. In
this context it is also pertinent to note that fractal geometry deal-
ing with systems of fractional dimensionality becomes a very use-
ful tool in the material sciences, geology, and astrophysics (see
Refs. [43–53] and the references therein).

Axiomatic basis for spaces of fractional dimension has been
provided by Stillinger [8] along with a generalization of an inte-
ger dimensional Laplacian operator into a non-integer dimensional
space S D . Specifically, the fractional dimension D of space S D is
introduced by the fifth axiom which defines the integration rule
in S D according to which the integral depends on distances be-
tween the points along the integration path, but not on their ab-
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solute positions in S D [8]. Accordingly, the Gaussian integral in S D

is defined as∫

S D

dV D exp
(
ar2) = (π/a)D/2, (1)

where a is a geometric constant and r ∈ S D is the radial coor-
dinate [8]. Eq. (1) defines the fractional measure in S D . In this
respect, it is imperative to point out that although Stillinger [8]
has not provided an explicit definition of metric in S D , Eq. (1)
implicitly implies the use of Euclidean metric r = √

rir j , where
the Einstein summation convention is assumed. Furthermore, the
space S D was endowed with the generalized Laplacian �α which
in terms of mutually orthogonal coordinates xi ∈ S D reads as

�α = ∂i∂ j + (α(i) − 1)x−1
i ∂ j, (2)

where ∂i f denotes the conventional partial derivative with re-
spect to xi in En (no summation convention for indices in brack-
ets), while 0 < α(i) � 1 are dimensional exponents (

∑n
i α(i) =

D < n) [9]. The generalized Laplacian (2) was employed to formu-
late the Schrödinger wave mechanics and Gibbsian statistical me-
chanics in S D [8,9] and used to develop the electromagnetic [53]
and gravity theories in the fractional dimensional space [24]. It was
also suggested that problems on fractals can be mapped into the
corresponding problems in the fractional space [53].

Alternatively, to deal with problems on a fractal medium ΦD
n

within a continuum framework, Tarasov [16,17] has suggested the
concept of fractal continuum. Generally, the fractal continuum can
be defined as an n-dimensional region Φn

D of the embedding Eu-
clidean space En filled with continuous matter (leaving no pores or
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empty spaces) and equipped with appropriate fractional (or frac-
tal) metric, measure, and rules of integration and differentiation,
such that properties of Φn

D (density, displacements, velocities, etc.)
are describable by the continuous (or, at worst, piecewise continu-
ous) differentiable functions of space and time variables in En [50].
This definition implies that the density of admissible states char-
acterizing how permitted places of particles are closely packed
in Φn

D ⊂ En should be scale dependent to fulfill the definition of
measure in a specific model [52]. Accordingly, it was suggested
that problems on ΦD

n with the fractal (Hausdorff, mass, box-
counting, etc.) dimension D greater than its topological dimension
dF < D can be mapped into the problems for fractal continuum
of the same fractal dimension, whereas the topological dimension
of Φn

D ⊂ En is per definition dFC = n > D . In this way, Tarasov has
adopted the left-sided Riemann–Liouville fractional integral to de-
fine the integration rule and employed the Riesz potential to define
the fractal measure in Φ3

D ⊂ E3 with the Euclidean metric [52].
However, instead to use of the non-local or local fractional deriva-
tive allied with the left-sided Riemann–Liouville fractional integral,
Tarasov has constructed the local differential operator expressed in
terms of conventional derivatives which is also inverse to this in-
tegral and satisfies the general form of the Gauss–Green theorem
for fractal manifolds [54]. In [19] the fractal continuum model was
modified using the modified Riemann–Liouville fractional integral
of Jumaire and the product measure, but the metric in Φ3

D ⊂ E3

was not defined. In [20,21] the fractal continuum model was con-
structed starting from the definition of fractal metric giving raise to
corresponding fractional calculus and fractal measure in Φ3

D ⊂ E3.
Different models of fractal continua were employed to study the
mechanics, hydrodynamics, and electrodynamics of heterogeneous
fractal media within a continuum framework [16–21,50,55].

On the other hand, the scale-dependent spectral dimension D S

of space–time has been proposed as a possible observable charac-
terizing the geometry in discrete quantum gravity [56–65]. Specif-
ically, it was suggested that the classical value D S = D = 4 in
the infrared (IR) is reduced to D S � 3 in the ultraviolet (UV),
whereas D = 4 in all scales. Accordingly, several models of quan-
tum gravity are defined in the space–time of integer dimension
D = 3 + 1, whereas the spectral dimension D S � D is scale depen-
dent, but the value of D S in the UV limit is different in different
models (see Refs. [56–65]). Besides, authors of [66,67] have sug-
gested the existence of scale-dependent metric associated with
asymptotically safe scenarios in quantum Einstein gravity. More
recently, Calcagni [68–70] has developed the field theory living
in a multi-fractal space–time with scale-dependent D H and D S .
In this model, the Minkowski space–time Mn

D was equipped with
the multi-dimensional Lebesgue–Stieltjes measure dρ(xi) whose
form was obtained by arguments taken from fractal geometry us-
ing the rules of non-local integro-differential fractional calculus
Calcα = {∂α, Iα,dα}, the fractional Laplacian �α , and the 2α-norm

‖X‖α = ∣∣xα
i xα

j

∣∣1/2α
, (3)

where the range of admissible α is restricted by the interval
0.5 � α � 1 [70]. Consequently, the distance between two points
X, Y ∈ Mn

D in Mn
D is defined as rα(X, Y ) = ‖X − Y ‖α . Furthermore,

it was shown that the Hausdorff dimension of the Minkowski
space–time Mn

D is D H = β +α(n−1), while the spectral dimension
is D S = βD H , where β = 2/DW and DW is the dimension of ran-
dom walk in Mn

D [68–70]. In this context, it is pertinent to point
out that there are many other dynamic systems displaying scale
dependence of fractal dimension (see, for example, [71–75]).

In this Letter, we suggest that physical phenomena in sys-
tems exhibiting dimension flow can be described in the Minkowski
space–time endowed with appropriate scale-dependent metrics

and the local differential vector calculus based on scale-dependent
space metric.

2. Scale-dependent spatial metric and measure in n-dimensional
space

First of all, let us construct n-dimensional space Rn
γ with

the conventional Euclidean norm ‖r̄‖ = √
xi x j , but endowed with

the scale-dependent metric, the corresponding weighted Lebesgue
measure, and an appropriate local differential vector calculus. In
this way, instead of the metric related to the Euclidean norm, here
the distance between any pair of points X, Y ∈ Rn

γ is defined as
follows

rγ (X, Y ) = √
δiδ j, (4)

where

δi(xi, yi) = χ(i)(xi)xi − χ(i)(yi)yi,

while χ(i)(�i) = 1 + (1 − γ )(�i/�0)
γ −1, (5)

�0 is the characteristic length (e.g. the Planck length �P ≈ 1.7 ·
10−35 m, or characteristic size of multi-fractal features in hetero-
geneous medium), and 0 < γ � 1. Physically, “weight” functions
χ(i)(�i) account the scale-dependent distribution of admissible
states between X and Y in Rn

γ , such that the density of states
ψ(i)(xi) = limyi→xi [δi(xi, yi)/(xi − yi)] characterizes how the per-
mitted places between two points are closely packed in Rn

γ [52]. It
is a straightforward matter to verify that the distance defined by
Eq. (4) together with Eq. (5) satisfies all conventional requirements
for metric. That is: rγ � 0, rγ (X, Y ) = rγ (Y , X), rγ (X, X) = 0, and
if rγ (X, Y ) = 0 then X = Y , while rγ (X, Y ) + rγ (X, Z) � rγ (Y , Z).
Notice also that in the limiting case of γ = 1 Eqs. (4), (5) de-
fine the Euclidean metric and so Rn

γ =1 is essentially the Euclidean
space En . Furthermore, in space Rn

γ <1 the Euclidean metric is ef-
fectively restored at scales of �i � �0 (i = 1,3, . . . ,n).

The weighted multi-dimensional Lebesgue measure allied with
metric (4), (5) can be presented in the form

dVγ n(xi) =
n∏

i=1

ψ(i) dxi,

where ψ(i) = 1 + γ (1 − γ )

(
xi

�0

)γ −1

, (6)

from which follows that the metric (e.g. Hausdorff) dimension dH

of Rn
γ <1 is scale dependent (see Fig. 1(a)). Specifically, on the “IR

scale” �i � �0 the metric dimension asymptotes to the spatial
(topological) dimension of Rn

γ <1, that is dH = n, whereas in the
“UV limit” �i � �0 the metric dimension achieves the minimum
value dH = γ n < n.

Furthermore, the metric defined by Eqs. (4), (5) implies that the
local partial derivative in Rn

γ can be defined as

∂
γ
i f = lim

yi→xi
x j=const

[
f (xi) − f (yi)

δi(xi, yi)

]
= [

∂i
(
χ(i)xi

)]−1
∂i f = ψ−1

(i) ∂i f .

(7)

Notice that (7) differs from the fractional derivative defined as
f (γ )(xi) = limh↓0[�γ f /hγ ], where �γ f is expressed as a frac-
tional Taylor’s series of f (xi) [26,32]. Furthermore, we can define
the vector local differential operators in R3

γ as follows

�∇γ ϕ = ψ−1
(i) �ei∂ jϕ = Gradγ ϕ, (8)

Divγ
�f = �∇γ · �f , Rotγ = �∇γ × �f , (9)

�γ ϕ = �∇γ · �∇γ ϕ = ψ−2
(i)

[
∂i∂ jϕ − γ (1 − γ )2(xi/�0)

γ −2∂ jϕ
]
,

(10)
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