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We compute the magnetoelectric response of an interacting topological insulator in three space
dimensions with a short range interaction between electrons in different orbitals. We show that in
the presence of interactions and inverted bands the chiral phase is gauged away and replaced by
a topological angle (9-term) which is determined by saddle point of the interacting action and the
Fujikawa integration measure. The magnetoelectric response breaks time reversal symmetry which is

restored at strong interactions. The effect is equivalent to the one in four dimensions without interaction;
it can be observed by measuring the Faraday rotation under external stress.
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1. Introduction

When time reversal symmetry is broken the electromagnetic
Hamiltonian for a material in 3+ 1 dimensions H = 1 (€E2 + %BZ)

is modified by the term 6H = 9(%)5 - B where 0 <6 < . The
value of topological angle # is determined by an axion field 6 (7, t)
which in the static case becomes 6(r) ~ 6 [1-4]. The axion field
results from the projection of a higher dimensional Hamiltonian to
3+ 1 dimensions. For time reversal invariant systems such as non-
interacting topological insulators (TI) the axion field is replaced by
the topological angle 6 = +7 and the second Chern number in
4 + 1 dimensions. Insulators with spin-orbit interactions can give
rise to either regular insulators or to topological insulators. The
low energy excitations of the insulators such as Bi;Ses; and Bi,Tes
can be approximated by a two-band model with spin-orbit inter-
actions which respect the time reversal symmetry. One finds that
when bands at the I' point are inverted, the system is a TI ac-
cording to the classification of the second Chern number [5] or
band invariants introduced in Ref. [6]. One of the possible exper-
imental evidences came from the Faraday effect, when circularly
polarized light passes from a medium with 6 = 0 (normal insu-
lator) to a medium with 6 # 0 a rotation of the polarization is
expected. Since time reversal symmetry is not broken the rota-
tion must correspond to a topological angle 6 =+ [1,7,8]. One
of the experimental difficulties to observe a quantized response
arises from the fact that the experiments are performed in three
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space dimensions and the second Chern topological invariant ex-
ists in four space dimensions.

A formal solution to this problem was given in [7-9] which
suggested to use dimensional reduction. One performs the compu-
tations in four space dimensions and then compactifies one of the
coordinates to a small circle. Other solutions based on a macro-
scopic polarization on the surface of the sample have been pro-
posed [10,11]. An adiabatic approach to the polarization has been
given in [12] for the second Chern number. The relation between
the second Chern number and polarization follows from the math-
ematical physics literature [5]. The second Chern number can be
written as an external derivative of a local three-form. This means
that for different regions we have different three-forms. The use
of Stokes theorem allows us to show that the four space dimen-
sional integration of the Chern character [5] is equal to the bound-
ary difference of the three-forms in three dimensions. This result
allows us to identify the Chern number with the polarization dif-
ference AP for a band model with no interactions [9]. Another
important result [5,13] is the chiral anomaly. The Dirac equation
in three space dimensions does not conserve the y° current ]é‘ ,
instead we have (the integral over the 4-torus) fT4 E)MJISL = AP.
Therefore the presence of a coupling field of the form y°¢ can
generate a polarization term AP as obtained in the band model
without interactions in four space dimensions. The relation be-
tween the topological angle 6 and quantization has been discussed
in [14]. Only recently the effect of interactions on TI has been con-
sidered [15]. The effect of an applied magnetic field on the surface
of a TI gives rise to a simple relation between the Faraday and Kerr
rotations [16].

The main purpose of this Letter is to present a derivation for
the magnetoelectric response of TI in three space dimensions. This
is an extension of the work in Ref. [17]. We obtain this result using
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an explicit two-body orbital interaction for insulators with inverted
bands. The interaction gives rise to an effective action which is
controlled by a “bond order” parameter defined between orbitals.
The action of the interacting electrons and the path integral mea-
sure are invariant under an arbitrary chiral transformation [13].
The saddle point of the action has the y> symmetry and deter-
mines the bond order parameter as well as fixes the coefficient
of the chiral transformation. As a result one obtains an electro-
magnetic action which breaks the time reversal symmetry. The
coefficient of the electromagnetic term is determined by the sad-
dle point and the integration measure which fix the topological
angle 6. Experimentally the topological angle is determined by the
coupling constants and external perturbations such as stress [18].
The value of 6 determines the Faraday rotation between two re-
gions: the first region consists of an interacting TI and the second
region represents a non-interacting insulator. The value of 6 in turn
is determined by the integration over the bond order parameter. At
a particular interaction strength the value of 6 is § = £, time re-
versal symmetry is restored and the system is a TI. For 6 =0 we
have a regular insulator. Only for special values of the interaction,
the values of § =0, +m are described by a second Chern number
in three space dimensions. Since the second Chern number ex-
ists only for four space dimensions for non-interacting electrons,
we conclude that the presence of electron-electron interaction in
a three dimensional model with inverted bands has a second Chern
topological invariant and behaves as a non-interacting TI in four
space dimensions.

The contents of the Letter are as follows. In Section 2 we in-
troduce the model for TI in the presence of a bond interaction
which, with the help of the Hubbard-Stratonovich transformation,
is represented as a chiral charge density wave field ¢ (7). Section 3
represents the central part of this Letter, where we include the ex-
ternal electromagnetic field A% in the action. We perform a chiral
transformation e*®”” for an arbitrary field A(F). Since the par-
tition function is invariant under this transformation, the action
and the integration measure_are modified. The integration mea-
sure generates the term A(F)E - B which breaks the time reversal
symmetry. The fermionic action S contains a modified bond order
parameter which depends on the field A(r). The value of A(F) can
be fixed by demanding that the transformed bond order param-
eter vanishes. As a result, the term A(F)E‘ . B becomes a function
of A(¢(r)). We perform a saddle point integration over the bond
order parameter and obtain the electromagnetic response function

0(%)}? B (where 0 is a function of the fluctuation fields around
the saddle point). Section 4 contains our main conclusions.

2. Topological insulator in three space dimensions

We will compute the magnetoelectric response of the TI ma-
terials Bi;Ses and BiyTe;. The low energy bands consist of four

projected states, the conduction and valence states |P17F, :I:%) and

|P27F, i%) near the Fermi surface at the I point [17,19-23]. Due
to the strong spin-orbit coupling the level |P1f,j:%) is pushed
down while |P2J_r,:|:%) is pushed up resulting in a band inver-
sion. Using the notation |orbital=7 =1)Q |spin=0 =1, |) =
|P1%,+1) and Jorbital = T =2) ® |spin=0 = 1, |) = |P2T, +])
we obtain the effective Hamiltonian 73 at the I' point: 3¢ =
krol®@th) —ki@?®@1t) +nks(@? @ 1"+ M(k)(I ® t3), where
M(E) = M(0) — Bk? determines whether the insulator is trivial or
topological. Here B is a parameter (“inverted” effective mass). For
@ > 0 we have a TI (an insulator with an inverted gap) and

a regular insulator for % < 0 [6,8,23]. The band anisotropy in
the z direction is given by n « 1. Due to the Nielsen-Ninomiya
theorem [22] the total number of Dirac points must be even. The

Dirac Hamiltonian linearized around the I" point has been con-
sidered in Ref. [23] and contains additional non-relativistic terms.
The eigenvalues in the vicinity of the I" point are given by E (k) =
:i:\/k% —l—k% + 772k§ +M(E)2. We extend the model (with a single
Dirac point) to a torus and demand the momentum periodicity
- <ki<m, - <ky<m, —w <k3 <. Itis convenient to per-
form a unitary transformation U = ((2'%"3 ®1D:

W = U130 = ko' + koo + nksa® + M(K)B, (1)

where the matrices « and B are given by: o' = (¢! ® 17), i =
1,2,3,and 8 = (I ® t3).

Next, we include the bond interactions in three space dimen-
sions. We consider a particular type of bond interaction Hjp in
three space dimensions which we describe using the four com-
ponent spinor ¥ (f) = [¥r—1(F), ¥r—2(P)]T, where ¥, (F) is a two
component spinor with o =14, |, ¥; () = [V 1 (), ¥, ()17 and
Nro () = lIITT,U(F)lI/r,g(F) represents the fermion number for the
orbital T and spin o
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where Ugg > 0. The proposed interaction in Eq. (2) is related to
the following “orbital Hartree-Fock” Ey_f interaction:

En_r E2Ueff/d3r[n1,T(F)n2,T(F)+n1,¢(F)n2,¢(F)

+n1,4(F)ng,, () +n1,y Pz 2 ()] (3)

The difference between Ey_g and Hj, is given by the term:
% (1 1,0 + 2y Fot) + m1y G, 0) + np (7, 0)). This term is
taken into account in the calculation by using a modified chemical
potential. Therefore the Ey-r Hamiltonian is a good approximation
to the proposed bond interaction Hamiltonian Hijp.

The action for the three dimensional TI Hamiltonian h3¢ with
the interaction Hjp is given by:

o0
S= / dt/cﬁr [!I/T(F, t) [iat+ia1a1 +io?dy +ina’os
—00

- ﬁ(M(O) -BY_ af)]lp(a 3)

1=1,2
U, . .
+ T”(W(r)(l ® rz)lI/T(r))z]. (4)

Using the Hubbard-Stratonovich transformation we replace the in-
teraction term by a chiral density wave field ¢ (7, t). The interaction
corresponds to a charge density wave order which acts between
the bands (orbitals). The order parameter ¢ emerges from the

ground state expectation value (3_,_, | lI/;r:LU(?)lI/r:z,(, @) =i
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